Nitrogen Utilizing Bacteria in Shallow Nitrogen-Contaminated Groundwater Originating from a Leaking Cattle Feedlot Holding Pond Daniel N. Miller, USDA-ARS, Lincoln, NE (dan.miller@ars.usda.gov)

Problem:

- Wastewater holding ponds normally control nutrient movement to aquifers.
- Older holding ponds may be a point source for N (nitrate and ammonium) contamination.

<u>Aims</u>:

- Investigate shallow N contamination near a cattle feedlot runoff holding pond.
- Determine potential for N-utilizing microbes to remediate N in the subsurface.

Site Description:

Microbial Analyses:

- Four-foot cores from land surface to 24 feet BLS.
- RS-1, D-2, and A-2 used for MPN determinations and potential activity assays.

Culture-based Microbial Abundance

- Older feedlot located in Platte River valley—surface soils overlay fluvial sands.
- Water table is 6 feet below land surface (BLS)—background NO₃ (35 to 65 ppm) and NH₄ (0.1 ppm).
- Holding pond monitoring well tested high for NH₄ and Cl⁻ triggering study.

Plume Geochemistry (8-12 ft BLS):

Conclusions:

- High concentrations of NH₄ and Cl⁻ indicate the holding pond is the source of a contamination plume.
- NO₃ consumed in/near holding pond (C source).
 NH₄ plume near pond, NO₃ accumulation further down-gradient (NH₄ oxidation?).
- Cl⁻ concentrations high (>60 ppm) within plume (background <15 ppm).
- Geochemistry indicates denitrification at the holding pond (NO₃ loss) and possible nitrification further down-gradient converting NH₄ to NO₃.
- Presence of nitrifying and denitrifying microbes supports conclusion of an active N-utilizing community.
- Ongoing isotope and molecular work is clarifying the roles of specific microbial groups.