Comparing stacked and alternate-year cropping systems

A.W. Lenssen¹, **U.M. Sainju²**, **B.L. Allen²**, **TC. Caesar-TonThat²**, and **R.G. Evans²** ¹Department of Agronomy, Iowa State University; ²USDA-ARS, Sidney, MT

iversification of wheat-fallow systems can improve economic and environmental sustainability of semiarid cropping systems, but the influence of rotation type and management level are little known. We conducted a study from 2005 through 2011 comparing two sets of crops in stacked and alternate-year rotations under conventional and ecological management levels. Crop sets were durumcanola-pea and durum-flax-pea. Continuous durum was included as a control. Conventional management

Table 1. Management pra	ctices for durum in co	onventional and ecological systems
Parameter	Conventional	Ecological
Urea fertilizer application	Preplant broadcast	Banded in single-pass planting
Tillage	Spring, field cultivar	Zero tillage
Planting rate, seed ha ⁻¹	2,223,000	2,964,000
Planting date 2005-2007	Standard	Delayed 2-3 weeks from Standard
Planting date 2008-2011	Standard	Same day as Standard
Stubble height at harvest	Short	As tall as possible

included preplant tillage with a field cultivator, broadcast urea, standard seeding rates, and short durum residue height at harvest. Ecological

in a semiarid environment

Conclusions

Stacked- and alternate year rotation types generally were similar for the durum agronomic parameters measured in this study. Diversification of continuous durum production systems decreased weed biomass at harvest regardless of rotation type.

Table 2. Stand density, grain yield, yield components, and crop and weed biomass for durum in two management systems and five rotations for seven years. Treatment Stand Grain Tillers Height Crop biomass Weed biomass Harvest index # m² kg ha⁻¹ kg ha⁻¹ # tiller mg seed cm Management 278 Conventiona 5001 0.38 61 0.37 226 335 a 28.3 35.3 63 5421 2009 Ecological Rotation 0.38 340 a Continuous Durun 0.36 212 b 5179 D-Canola-D-Pea 0.38 267 ab D-D-Canola-Pea 4992 D-Flax-D-Pea 0.39 236 ab 299 b 5294 327 a 29.2 ab 0.35 205 b D-D-Flax-Pea 62 5468 0.41 248 b 2005 5529 b 0.21 2006 4399 cd 235 b 55 d 2007 2008 4102 c 0.39 4 d 5335 b 0.45 100 c 2009 51 e 0.35 454 a 2010 7186 a 80 a 2011 251 d 4714 c 0.43 470 a 31.2 ab 63 c Significance NS Management 0.054 Rotation (R) NS MxR *** Year (Y) *** MxY RxY NS NS NS NS MxRxY † Means followed by different letters within columns and treatment differ at P=0.05.

^{*}*=0.05, **=0.01, ***= 0.001, respectively.

management included zero tillage, banded urea at planting, greater seeding rates, and tall durum residue height at harvest **(Table 1)**.

Rotations differed for stand and tiller density, and seed head-1, but differences were not consistently related to rotation type **(Table 2)**. The greater seeding rate for ecologically managed durum resulted in denser crop stand and reproductive tillers, however, it did not result in decreased weed biomass (Table 2). Interactions of rotation with management (Table 3) and year (Table 4) were significant for durum yield. Durum yield was greater three of six years under

Table 3. Management by rotation interaction for **durum** grain yieldaveraged over six years.

			Management		
Rotation		Conv	entional	Ecological	
		yield	kg ha⁻¹		
Continuous Duru	ım	1833	а	1948 a	
Durum-Canola-D	ea 1826	а	1893 a		
Durum-Durum-C	ea 1701	b	2081 a		
Durum-Flax-Dur	1827	а	2203 a		
Durum-Durum -F	1918	а	1917 a		
Table 5. Grain yield,	crop biom	ass, harvest	index, and	weed biomass	
for five rotations in t	wo manag	ement syste	ems over 7 y	/ears.	
Treatment		Crop biomass	HI	Weed biomass	
	kg ha⁻¹ k	kg ha⁻¹		kg ha⁻¹	
Management					
Conventional		1885	0.34	285	
Ecological	1802 5	5170	0.35	242	

Table 4. Management system by yearinteractions for durum.

	Management				
Year	Conventional	Ecological			
	Grain yield, kg ha ⁻¹				
2005	2074 a	2266 a			
2006	963 a	853 a			
2008	1759 a	1443 b			
2009	2247 b	2535 a			
2010	2269 b	2726 a			
2011	1614 b	2227 a			
	2				
	Tillers, no. m ²				
2005	321 b	382 a			
2006	251 a	264 a			
2008	303 a	307 a			
2009	274 b	342 a			
2010	354 b	437 a			
2011	222 b	280 a			
	o i i i 1				
	Seed, no. head ⁻¹				
2005	30.6 a	29.9 a			
2006		26.8 b			
2008	26.6 a	23.9 b			
2009	27.7 a	26.7 a			
2010		31.3 b			
2011	30.2 a	32.1 a			
	Crop biomass, kg ha ⁻¹				
2005	5038 b	6021 a			
2006	4657 a	4140 a			

ecological management than under conventional management. When differences existed, durum under ecological management was taller and had more reproductive tillers, but fewer seed head-1, than durum under conventional management. Rotation type and management inconsistently influenced weed biomass. Continuous durum had the greatest mean weed biomass at harvest **(Table 2)**. Weed biomass in durum did not differ between conventional and ecological management systems in four of six years **(Table 4)**. Durum was severely damaged following application of bromoxynil-MCPA herbicides during an unusually hot and humid day in 2007 and results for that year are not presented.

When systems are compared across all crop phases, conventional and ecological management provided similar grain yield, crop biomass, harvest index, and weed biomass (Table 5). Continuous durum had the greatest grain yield. Stacked- and alternate year rotations with canola had higher grain yield than the stacked rotation that included flax; the alternate year rotation with flax was intermediate to all other rotations. Weed biomass was lower in rotations that included canola than rotations that included flax, regardless of rotation type (Table 5). Harvest index was not influenced by rotation type. Economic analyses will provide additional information necessary for improved farmer decision making with these production systems.

Continuous Durum	1891 a	5120 ab	0.38	340 a	2008	4287 a	3916 a	
D-Canola-D-Pea	1762 a	5318 a	0.34	183 b				
D-D-Canola-Pea	1706 a	5119 a	0.34	194 b	2009	5219 a	5452 a	
D-Flax-D-Pea	1689 ab	4815 b	0.35	277 a	2010	6894 a	7477 a	
D-D-Flax-Pea	1577 b	4767 b	0.35	325 a	2011	3910 b	5517 a	
Year								
2005	1934 b	5333 b	0.39 a	261 ab		Harvest index		
2006	970 d	4279 c	0.23 c	245 ab	2005	0.44 a	0.38 b	
2007	-	-	-	-	2006	0.21 a	0.21 a	
2008	1496 c	4370 c	0.34 b	46 c	2008	0.41 a	0.36 a	
2009	1938 b	5176 b	0.37 a	143 b	2009	0.44 a	0.46 a	
2010	2227 a	6325 a	0.36 a	536 a	2010	0.34 a	0.37 a	
2011	1786 b	4684 c	0.41 a	350 a	2011	0.43 a	0.43 a	
P > F								
Management (M)	NS	NS	NS	NS		Weed biomass, kg ha ⁻¹		
Rotation (R)	*	**	NS	***	2005	276 a	218 a	
MxR	NS	NS	NS	NS	2006	258 a	213 a	
Year (Y)	***	***	***	***	2008	2 a	7 a	
MxY	*	**	NS	**	2009	41 b	160 a	
RxY	NS	NS	NS	NS	2010	583 a	324 b	
MxRxY	NS	NS	NS	NS	2011	508 a	433 a	
						ans within parameter and rows followed		

by the same letter do not differ at P=0.05

Rotation