Ammonia Volatilization and Rice Growth as Affected by Rainfall Amount and Urease Inhibitor

DIVISION OF AGRICULTURE RESEARCH & EXTENSION University of Arkansas System

R.J. Dempsey*, N.A. Slaton, C.G. Massey, and R.E. DeLong

Contact: rdempsey@uark.edu

University of Arkansas Division of Agriculture, Agricultural Experiment Station, and Cooperative Extension Service

INTRODUCTION

Urea is the most common N source used in the dire seeded, delayed-flood method of rice (Oryza sativa production in Arkansas. Urea has a high potential ammonia (NH₃) volatilization if not quickly incorporated into the soil by timely rainfall or floo Cumulative NH_3 losses from urea applied 5 to 10 preflood may account for 17 to 24 % of the applied (Norman et al., 2009). Literature suggests that a minimum of 7.6 mm of rainfall is required to significantly reduce NH₃ volatilization of surfaceapplied urea (Holcomb et al., 2011). If a permanent flood cannot be established quickly, fertilizer-N ma undergo nitrification followed by denitrification af the flood is established. Nitrification of hydrolyzed urea-N may occur when rainfall occurs between the time that urea is applied and the field is flooded.

ect-	Table 1. Analysis of variance for cumulative NH_3 -Nvolatilization loss as influenced by N source,simulated rainfall amount, and their interaction.				1. Cumulative N loss as influenced by the action of N source and simulated rainfall unt.	RESULTS <u>Cumulative NH₃ volatilization</u>
a L.) for	Source of Variation	Degrees of Freedom	NH ₃ -N Vol. p-value	12	Significant quadratic N source by simulated rainfall interaction (Table 1 & Fig. 1)	
ding.	N Source (NS)	2	< 0.0001	10 -	Image: Wight of the second system Urea-NBPT $y = 0.006x^2 - 0.23x + 2.2 (t^2 = 0.81)$ Image: Wight of the second system $y = 0.015x^2 - 0.73x + 9.1 (t^2 = 0.90)$ Image: Wight of the second system I	As simulated rainfall amount increased, NH ₃ volatilization (inside chamber) decreased for both N sources
	NS × Rainfall Amount (RA)	2	< 0.0001			
a IN	$NS \times RA \times RA$	2	< 0.0001	8 (%	+	> NH ₃ -N loss was greater for Urea than for
	Photo 1. Portable rainfall simulator used to apply water to plots.			N Loss () ssol 4 N Los	Urea-NBPT at simulated rainfall amounts of 0 to 19.1 mm
nt					+	> The predicted amount of simulated rainfall
ay fter				2		required to prevent NH ₃ -N loss (predicted loss not different than 0) was
d				0		 9.8 mm for Urea-NBPT

Our research objective was to compare the effects of simulated rainfall amounts and a urease-inhibiting amendment on NH_3 volatilization, rice N uptake, and grain yield.

MATERIALS AND METHODS

- > Two field experiments conducted in 2013
 - Pine Tree Research Station (Colt, AR) on an alkaline Calhoun silt loam
 - Trial A and B
 - Planted: (A) 16 May and (B) 4 June
 - ✤ N application: (A) 28 May and (B) 25 June
- > Two N sources (112 kg N ha⁻¹)
 - Untreated urea (Urea)
 - NBPT-treated urea (Urea-NBPT; 0.88 g NBPT kg⁻¹ urea)
 - \clubsuit NBPT = N-(n-butyl) thiophosphoric triamide

Table 2. Analysis of variance for N uptake as influenced by trial, N source, simulated rainfall amount, and their interactions.

Source of Variation	Degrees of Freedom	N Uptake p-value						
N Source (NS) x Trial	4	< 0.0001						
NS × Rainfall Amount (RA)	2	0.0589						
$NS \times RA \times RA$	2	0.0302						
$NS \times RA \times RA \times RA$	2	0.0211						
Photo 2. Distribution of simulated rainfall applied to plots.								

Fig. 2. Rice N uptake as influenced by the interaction of trial, N source, and simulated rainfall amount.

• 20.5 mm for Urea

Rice N uptake

- Significant cubic N source by simulated rainfall amount interaction (Table 2 & Fig. 2)
- Within each trial, N sources were significantly different when simulated rainfall amounts were < 0.5 mm and between 12.5 and 23.0 mm</p>
- The cubic response was unexpected, but trends to simulated rainfall amount were similar in both trials. While the reasons are not clear, the results may be attributed to the cumulative N loss from two N loss mechanisms (NH₃ volatilization and denitrification).

Rice grain yield

- Significant linear N source by simulated
 rainfall amount interaction (Table 3 & Fig. 3)
- For Urea-NBPT, rice yields were constant across simulated rainfall amounts in both trials.
- > For Urea, rice yields decreased linearly with

- Simulated rainfall amounts
- 0, 3.2, 6.4, 12.7, 19.1, and 25.4 mm
- Applied with a portable rainfall simulator
- Simulated rainfall started 5 hr after urea application
- > Ammonia volatilization (Trial A)
 - Semi-static chamber method (Griggs et al., 2007)
 - Foam sorbers replaced 2, 3, 5, 8, and 11 d after N application and simulated rainfall
- Permanent flood
 - 12 d (A) and 6 d (B) after N application and simulated rainfall
- Aboveground N uptake
 - 0.9 m linear row sample taken at early heading
 - Analyzed for N content using combustion method
- > Statistical analysis (comparisons made at $\alpha = 0.10$)

Table 3. Analysis of variance for grain yield asinfluenced by trial, N source, simulated rainfallamount, and their interactions.

Source of Variation	Degrees of Freedom	Grain Yield p-value
N Source (NS) × Trial	4	< 0.0001
NS × Rainfall Amount	2	0.0004
Photo 3a. View of semi-sta	tic volatilizati	on chamb

Trimmed plots ready for harvest (right).

Fig. 3. Rice grain yield as influenced by the interaction of trial, N source, and simulated rainfall amount.

Acknowledgements

Research funded by Arkansas Rice Check-Off funds administered by the Arkansas Rice Research and Promotion Board and the University of Arkansas increasing simulated rainfall amount.

- ➤ For Trial A, yields from rice fertilized with Urea-NBPT were greater than Urea with ≥ 7.5 mm simulated rainfall
- For Trial B, yields between N sources were similar with 2 to 26 mm of simulated rainfall

PRACTICAL APPLICATION

Ammonia volatilization and denitrification may interact to influence cumulative N loss when rainfall occurs between urea application and the establishment of the permanent flood. Results from these trials suggest that the urease inhibitor, NBPT, may reduce NH_3 volatilization and, perhaps, delay nitrification under favorable soil moisture conditions. Additional research is required to better understand the processes that are occurring across a range of rainfall amounts and frequencies between the time of urea-N application and establishing the permanent flood.

NH₃ volatilization, N uptake, and grain yield were regressed across simulated rainfall amount

Regression analysis allowed for linear, quadratic, and cubic terms with coefficients depending on N source with model terms removed at $\alpha = 0.15$

Griggs, B.R., R.J. Norman, C.E. Wilson, Jr., and N.A. Slaton. 2007. Ammonia volatilization and nitrogen uptake for conventional and conservation tilled dry-seeded, delayed-flood rice. Soil Sci. Soc. Am. J. 71: 745-751.
Holcomb, J.C., D.M. Sullivan, D.A. Horneck, G. H. Clough. 2011. Effect of irrigation rate on ammonia volatilization. Soil Sci. Soc. Am. J. 75: 2341-2347.
Norman, R.J., C.E. Wilson, Jr., N.A. Slaton, B.R. Griggs, J.T. Bushong, and E.E. Gbur. 2009. Nitrogen fertilizer sources and timing before flooding dry-

seeded, delayed-flood rice. Soil Sci. Soc. Am. J. 73: 2184-2190.