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Table 2. Measured switchgrass dry matter yield (£ one standard deviation) for
sensitivity analyses averaged across N-inputs for 10 yrs. at four locations in Tennessee.
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equipment-use hours, electricity,
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seed, herbicide, and surfactant, as
well as GHG emissions emitted
during these processes) were taken
from the US LCI Database In
SimaPro (Pré Consultants, 2012).
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Figure 5. Global warming potential (kg CO,-equivalents) of switchgrass
production over a range of input levels (0, 67, 134, and 202 kg N ha,
Sensitivity #1-4, respectively), regional production from area growers, and a
legume-intercropping scenario (based on 10-yr simulation period).
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this survey established ‘baseline N-levels.’ 1.2. Switchgrass feedstock production under nitrogen inputs beyond current recommended input
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Figure 3. Impact categories and their relative impact proportion for nitrogen
iInput scenario sensitivities 1, 2, 3 and 4 (or 0, 67, 134, and 201 kg N ha,
respectively) and baseline production from farmers with the UTBI (based on 10
yr simulation period). A negative relative impact indicates a positive impact.
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