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METHODOLOGY 

INTRODUCTION 

OBJECTIVES 

RESULTS AND DISCUSSION 

1. Develop, calibrate, and validate a FL system to predict event-based 

runoff based on rainfall from three adjacent field-scale corn-soybean 

(Zea mays L.- Glycine max L.) watersheds before and after the 

establishment of upland contour agroforestry (tree+grass) and grass 

buffers on claypan soils of Northeast Missouri (Fig. 1a, Udawatta et al., 

2002). 

2. Compare the model performance with predictions by a physically-based 

Agricultural Environmental Policy eXtenter model (APEX) for the same 

watersheds in a previous study (Senaviratne et al., 2013). 
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 The claypan region of the Central U.S. experiences high rates of surface 

runoff from agricultural watersheds. 

 Estimation of surface runoff is essential to determine management  

options for non-point source pollutants (NPSP) such as sediments and 

nutrients. 

 Process-based physically distributed models are commonly used to 

predict runoff but require detailed physical data of watersheds in addition 

to significant time for setting-up the model. 

 Fuzzy Logic Systems (FL; Zadeh, 1965)  are data-driven, rule-based 

models developed based on fuzzy relationships of input/output variables.   

 Fuzzy rainfall-runoff models are often used to forecast flood or water 

supply in large catchments and applications at small/field-scale 

agricultural watersheds are limited.  

    

Fig. 2. Membership functions before and after genetic 

algorithm optimization of the rainfall and runoff output 

variables for fuzzy logic systems: pre-buffer (a and b), 

post-buffer agroforestry (c and d) and contour grass (e 

and f) watersheds at Greenley. Data labels represent 

membership functions: L- low, ML- medium low, M-

medium, MH- medium high and H- High.  
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 Three watersheds at Greenley were established with grass waterways in 

1991. Center and West watersheds were established with agroforestry 

and grass contour upland buffers (4.5 m width, 22.5 to 36 m interval) in 

1997. 

 Mamdani type FL system for rainfall-runoff predictions was developed 

using MATLAB 7.10.0 fuzzy logic commands. 

 Five fuzzy membership functions (MF) for rainfall and runoff and five 

rules were developed for the FL systems for pre- and post-buffer 

watershed conditions based on measured rainfall-runoff data of the 

watersheds used for calibration.  

 Genetic algorithm (GA) was used to optimize the membership functions 

x-coordinate values (search space allowed was within 10% of the initial 

value). 

 Robustness of the rainfall-runoff FL system was tested by changing 

number of membership functions (2, 3, and 4) and swapping data used 

for calibration and validation. 

 The rainfall-runoff FL system for the pre-buffer period was validated with 

the data from East watershed which was the control during 1998 to 

2008.   
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 The data from 1998 to 2001 of the post-buffer period was 

used for calibration and data from 2002 to 2008 was used for 

validation 

 The developed rainfall-runoff FL system was used for 

simulation of runoff of 30 and 50 times larger watersheds 

(300 and 301) in the Long Branch watersheds (Fig.1 b). 
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Fig. 1. Watersheds at Greenley 

Memorial Research Center in 

Knox County (a) and 300 and 

301 watersheds in the Long 

Branch watershed in Macon and 

Adair Counties (b), Missouri, 

USA.  
 The use of GA for the optimization of MFs improved model 

performance coefficients of r2 and NSC values by 0.02 to 

0.12.  

 Figure 2 shows the membership functions used initially and 

after the GA optimization. Most of the changes by GA 

optimization were seen for rainfall MFs. 

 The increase in number of MFs from 2 to 4 improved FL 

model performance coefficients [Nash Sutcliffe Coefficient 

(NSC), increased from -0.22 to 0.79; Percent Bias values 

(Pbias), decreased from -93.8 to -1.2]. 

 The FL system performance was minimally changed when 

calibration and validation data were swapped. 

 The GA optimized FL system predictions on event-based 

runoff of pre-buffer watersheds were very similar to those of 

the APEX model for calibration (Fig. 3a; Center watershed 

during1993 to 1997 period) and for validation (Fig. 3b; East 

watershed during 1998 to 2008 period).   

 The r2 and NSC values ranged between 0.69 and 0.94 and 

Pbias values were less than ±20% for calibration and 

validation of the FL model for both pre- and post-buffer 

watersheds.  

 The FL model predictions for event-based runoff showed 

15% and 23% reductions due to the presence of agroforestry 

and grass buffers, respectively.  The related measured 

reductions were 15% and 16%, respectively. 
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 The FL model satisfactorily predicted event-based runoff for 

two large watersheds in Long Branch watersheds (Table1). 

 The results for watershed 300 were better than 301 because 

of similar land use on 300 (86% row-crop) and the watersheds 

(90% row-crop) used for calibration of the model. 
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Fig. 3. Fuzzy logic (FL) and Agricultural Policy 

Environmental eXtender (APEX) model simulated event-

based runoff for Center (a; 1993 to 1997, pre-buffer 

period) and East (b; 1998 to 2008, Control) watersheds 

with measured  event rainfall and runoff. 

Watershed 

  

FL system performance 

r2 NSC Pbias 

300 (140 ha, 86% row-crop, 7% pasture, 

7% forest) 
0.82 0.77 26.52 

301 (259 ha, 77% row-crop, 22% pasture, 

4% forest) 
0.68 0.53 41.02 

Table 1. Model performance indicators of fuzzy logic (FL) 

system for prediction of event-runoff for 300 and 301 

watersheds (1997-1999, 36 events), Long Branch 

watershed, MO.  

 The FL model satisfactorily predicted event-runoff of field-scale 

watersheds using only rainfall as an input.  

 The results closely agreed with the physically-based APEX 

model for the same watersheds. 

 The FL model also predicted the effects of agroforestry and 

grass upland contour buffers on reductions of runoff 

comparable to the measured values. 

 The FL model satisfactorily up-scaled the runoff predictions for 

30 and 50 times larger watersheds.  

 The study showed that FL model could be used as an efficient 

tool for runoff estimation for watersheds with limited details. 

------   Before GA 

.......    After GA 
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3. Use the developed model to evaluate measured and predicted runoff 

from two large watersheds. 

Contact Email: SenaviratneA@Missouri.edu 
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