

---Introduction--

Exceptional Quality biosolids products are increasingly being used as amendments in urban landscapes. EQ biosolids can be a valuable amendment for disturbed, urban soil by imparting beneficial effects that can improve soil physical and chemical properties and providing sources of nutrients for improving plant biomass.

To assess newly developed EQ biosolids products developed from Blue Plains and Alexandria biosolids for use in urban landscapes using tall fescue and soybean as bioassay plants.

---Materials & Methods---

• The experimental design was **Randomized Complete Block Design**: 2 plants, 6 treatments, and 4 replications. (48 pots)

• Two types of plants: tall fescue (Rebels Southern Blend, with a seeding rate of 0.53g/ 6-inch pot) and soybean (seeding rate 5 seeds/ 6-inch pot). Soybeans were harvested before floral bud development to assess phytotoxicity and nutrient deficiency.

• Six treatments:

- 4 EQ biosolids amendments (400 cm³ each) incorporated into 1,500g of Old Hickory topsoil (Orangeburg fine-loamy, kaolinitic, thermic Typic Kandiudults) medium. Treatments:
 - Alex 50 (50% Alexandria EQ biosolids+25% sawdust+25% sand)
 - BP 50 (50% Blue Plains EQ biosolids+25% sawdust+25% sand
 - BP 40 (40% Blue Plains EQ biosolids+40% sawdust+15% sand+5% mineral fines)
 - TAG 50 (50% Tagro EQ biosolids+25% sawdust+25% sand) – industry std.
 - TPM (Tagro potting medium) contains 20% Tagro EQ biosolids, 20% sawdust, and 60% aged bark – industry std.
 - Control inorganic fertilizer
- All treatments applied to meet the agronomic N rate of tall fescue (150 kg N/ha).

Sampling and analysis:

- Growth period: Soybean 5 wks, tall fescue 11 wks
- Plant parameters: above and below ground biomass, soybean ht, total nitrogen and plant N uptake.
- Soil: Total nitrogen, total carbon, inorganic nitrogen (NO₃⁻ and NH_4^+), Mehlich 1 extractable P, K, and pH.

Comparisons of Exceptional Quality Biosolids Amendments as Disturbed Soil Amendments Hsuan-Chih Yu (hyu32@vt.edu), Gregory K. Evanylo and Kathryn Haering Department of Crop and Soil Environmental Sciences, Virginia Tech

---Results and Discussion--

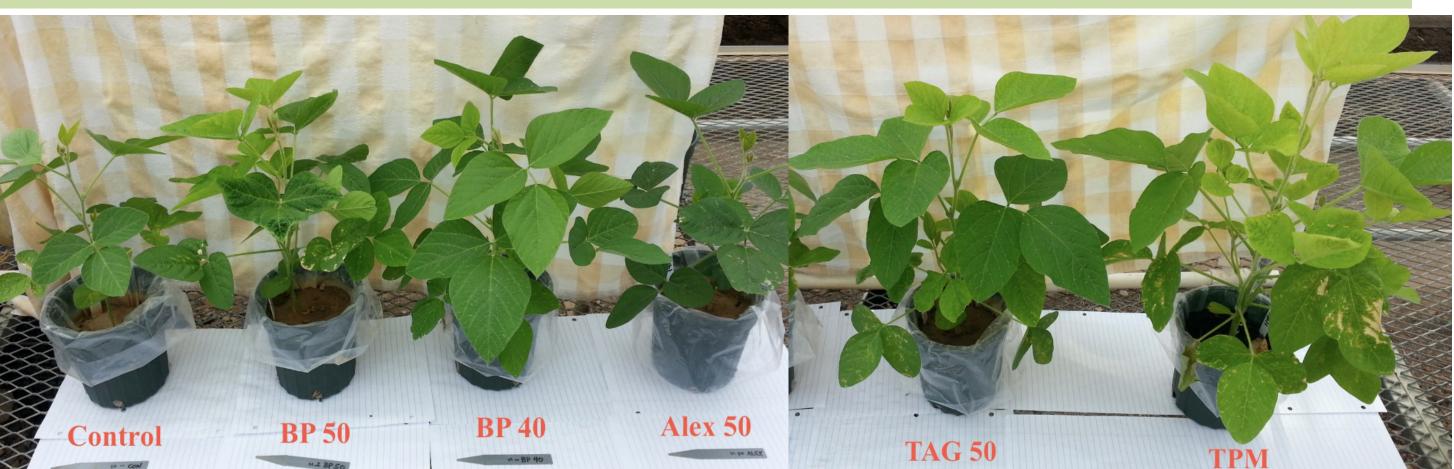


Fig 1- six soybean treatments before harvesting

BP 50 Fig 2- six soybean treatments before final cutting Table 1- comparison of three different biosolids amer

Biosolids amendments	Organic C, g kg ⁻¹	TKN, g kg ⁻¹	Organic N, g kg ⁻¹	NH₄-N, g kg⁻¹	C/N ratio	Total P, g kg ⁻¹
TAG 50	289	12.9	8.68	4.22	13.0	9.13
BP 50	242	14.1	10.7	3.38	9.97	9.12
Alex 50	244	14.1	9.07	5.03	10.0	11.2

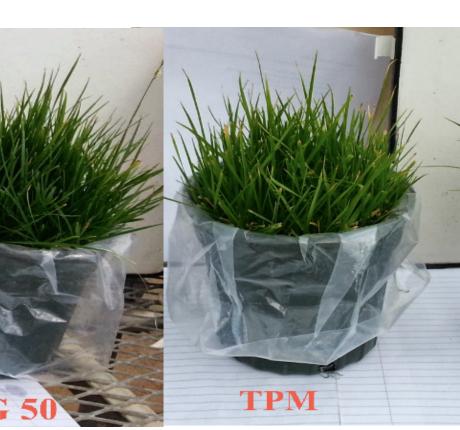
Table 2- Soybean and tall fescue biomass and tall fescue root wt

			Tall fescue	Tall fescue	Tall fescue
	Soybean mean	Soybean mean	mean dry wt(g)	mean dry wt(g)	mean root dry
Treatment	dry weight (g)	height (cm)	0-6 wks	0-11 wks	wt(g)
TPM	12.5 a	42.8 a	3.13 a	5.71 ab	3.3
TAG 50	7.5 ab	39.0 a	2.85 ab	5.58 abc	3.4
BP 40	5.5 bc	31.3 b	2.35 abc	4.18 c	2.9
BP 50	5.2 bc	36.5 ab	3.03 a	5.99 ab	1.7
Alex 50	4.6 bc	38.0 ab	2.22 bc	6.55 a	2.6
Control	3.6 c	8.3 c	1.90 c	4.81 bc	1.8

• BP 50 and Alex 50 performed well compared to the similar wellestablished TAG 50 blend for soybeans and tall fescue. • Alex 50-amended tall fescue dry weight increased compared to the other biosolids treatments after week 7. This was likely due to the delayed N release from the Alex 50.

• No phytotoxicity or nutrient deficiency were observed in any treatments.

---Conclusions---


• Alex 50 is the best amendment among all the other treatments, because it provided the highest long term N availability resulting in the highest biomass over time.

• The inclusion of mineral fines in the BP 40 supplements the low K in biosolids. • Alex and BP amendments pose less P environmental risk than TAG 50 due to lower P:PAN ratio.

Table 3- Soybean and tall fescue plant total nitrogen and total N uptake

	Total N in soybean	Total N in tall fescue	Tall fescue N uptake
Treatment	(mg N/g plant)	(mg N/g plant)	(TN x biomass)(mg N)
BP 40	35.45 b	37.4	156 c
TAG 50	26.13 b	35.7	201 abc
Control	35.54 b	37.0	178 bc
BP 50	31.75 b	39.77	237 ab
Alex 50	47.64 a	38.8	254 a
TPM	14.92 c	34.3	195 abc

• Alex 50 and BP 50 had higher N uptake in tall fescue compared to TAG 50; possibly due to the lower C/N ratio of Alex 50 and BP 50 that contributed to more mineralized N resulting in more N uptake.

Table 4- Soybean soil total C, P, K, and pH

Treatment	Total C in soil (mg C/g soil)	Total N in soil (mg N/g soil)	P in soil (mg P/ kg soil)	K in soil (mg K/kg soil)	pН
TAG 50	9.43 b	0.74 b	87 a	36 b	5.61 bc
Alex 50	10.35 ab	0.99 a	55 b	30 b	5.48 c
BP 40	11.76 a	0.90 ab	46 b	81 a	5.82 b
BP 50	9.40 b	0.82 ab	45 b	28 b	5.64 bc
Control	4.59 c	0.38 c	31 c	41 b	6.32 a

Table 5- Tall fescue soil total C, P, K, and pH

Treatment	Total C in soil (mg C/g soil)	Total N in soil (mg N/g soil)	P in soil (mg P/ kg soil)	K in soil (mg K/ kg soil)	pН
TAG 50	8.60 a	0.62 a	80 a	12 b	5.82 bc
Alex 50	7.25 ab	0.71 a	51 b	11 b	5.60 c
BP 40	8.34 a	0.67 a	41 b	59 a	6.10 ab
BP 50	6.48 b	0.54 a	38 c	11 b	5.59 c
Control	4.30 c	0.35 b	29 d	16 b	6.47 a

• Soil responses to treatments in soybean and tall fescue:

• Alex and BP raised soil P less than TAG 50

 BP 40 had highest K in soil, due to the addition of mineral fines

• pH was depressed by all 4 biosolids treatments, likely due to NH_4^+ nitrification to NO_3^- .

50	TPM
endments	
C/N ratio	Total P, g kg ⁻¹
13.0	9.13

• Total carbon was high in Alex 50 and BP 40 as in TAG 50