Soil-to-Atmosphere Greenhouse Gas Emissions from High- and Low-Input Turf Systems of Central Kentucky

University of Kentucky (dan.weber@uky.edu)

Research Question: Are there differences in trace gas emissions between homeowner lawn types and maintenance regimes?

	Hypo	theses		
•	H_1 : Over the entire season, the high maintenance turf will have both higher CO_2 and N_2O flux rates than the low maintenance turf.			1000 - 800 - 400 - 400 -
•	H_2 : Fertilizer applications to the high maintenance turf will stimulate a spike in N_2O , NH_3 , and CO_2 loss.			200 - 0 - 0210 ¹¹¹³
	Background			
•	effect trace gas fluxes. Turf covers 20 million Ha in the United States. Mostly concentrated in urban areas. Turf systems release trace greenhouse			800 700 1-4 -4 -4 -400 400
	Gases: CO ₂ – respiration (root & microbial) N ₂ O – denitrification NH ₃ – Ammonia volitilization 1 Figure 1. General diagra	CO ₂ – autotrophic photosynthesis N ₂ O – used as intermediate in N pathways NH ₃ – taken up by ammonia oxidizing bacteria	Flux into the Soil	300 510 550 550 550 450 - 450 - 450 - 300 - 300 -
movement in and out of soil. Measured flux is the net flux out of the soil.			250 -	
Decign & Mainte				

- All treatments were mowed to 7.6cm when the three replicates average over 10.2cm.
- High maintenance: irrigation, fertilization, and pesticide.
- Low maintenance: no inputs.
- Four Lawn *Maintenance* Types:
 - tall fescue high
 - Kentucky bluegrass high
 - zoysia grass low
 - "endemic" multi-species low
- Plots are 18.28x18.28m with 18.28m of runway between each plot.

Daniel Weber, Rebecca McCulley, and David Williams - Dept. of Plant and Soil Sciences,

-Low maintenance

Trace gas collar

Figure 2. Plot

two trace gas

layout showing

collars per plot.

0

Ο

0

Fescue

Ο

Fescue

Bluegrass

Figures 10, 11, and NH₃ Flux for October fertilization; red line application date. The October application

- stands.
- of plant uptake.

- doi:10.1177/1754337110396014.
- Ecol 28: 709-723. doi:10.1007/s10980-013-9878-9.

• May 7 – October 9, 2013 Every day surrounding a fertilization event (4 total) – starting two days before, and continuing every day for ~ 2 weeks

Figure 3. Picture showing the field sampling instruments: INNOVA photoacoustic gas analyzer and flux chamber. Figure 4. Trace gas collars were installed permanently in field, ~2cm above ground and 13cm below ground.

Conclusions

C₁: High maintenance turf generally did not have higher CO₂ and N₂O fluxes (**Figures** 5 and 6), except when there were extended large differences in soil moisture between the high and low maintenance

C₂: High maintenance turf did not show any spikes in CO_2 , N_2O , or NH_3 in response to fertilization (Figures 10, 11, and 12), which could be due to high levels

References

Bartlett, M.D. and I.T. James. 2011. Are golf courses a source or sink of atmospheric carbon dioxide? A modelling approach. Proceedings of the Institution of Mechanical Engineers Part P-Journal of Sports Engineering and Technology 225: 75-83.

Braun, M., Y. Bai, B. McConkey, R. Farrell, J.T. Romo and D. Pennock. 2013. Greenhouse gas flux in a temperate grassland as affected by landform and disturbance. Landscape

Townsend-Small, A. and C.I. Czimczik. 2010. Carbon sequestration and greenhouse gas emissions in urban turf. Geophys. Res. Lett. 37. doi:10.1029/2009gl041675.