Introduction

Automatic irrigation systems using sensors

Expensive(probes, dataloggers, EM valves...)

- Difficult or unable to adjust amount to weather forecast
- Computers getting affordable for farmers
 Numerical weather forecast: now available freely

Replacement of monitoring and optimization of irrigation scheduling using numerical simulation

New Procedure to Decide Irrigation Amount

Optimization of irrigation amount assuming as if the farmer obtained virtual income, which is nearly proportional to increment in DM attained during the interval

To evaluate effectiveness of proposed method as compared to automatic irrigation method in terms of net income under assumed prices of water and maize

Used Process Mode

WASH_2D for solving 2-d movement of water, solute and heat in soils with the finite difference method was used.

Features of WASH_2D:

- Root water uptake with a macroscopic root water uptake model
- Plant growth
- Automatic search of optimum irrigation depth
- Hysteresis in retention curve
- Thermal vapor movement

Freely distributed from: http://www.alrc.tottori-u.ac.jp/fujimaki/download/WASH_2D

Determination of Irrigation Depths Using a Process Model and Quantitative Weather Forecast Fujimaki Haruyuki¹, leyasu Tokumoto¹, Tadaomi Saito² and Masashi Shibata¹,

天気 🥶 🥶 🥶 🌞 🤐 沙 沙 長り 長り 晴れ 晴れ 晴れ 晴れ 晴れ

1) Arid Land Research Center, Tottori University, Japan 2) Faculty of agriculture, Tottori University, Japan

Soil: sand

Ш

- Irrigation method: drip (90 cm x 20 cm)
- at the depth of 15 cm < 0.09

