

Soil carbon and soybean yield as affected by tillage and liming

Moniki Campos Janegitz; Ciro Antonio Rosolem, Camila Grassmann

São Paulo State University, College of Agricultural Sciences, C.P.237, Botucatu, AL 18603-970, Brazil ,email: monikijanegitz@fca.unesp.br

Introduction

Liming is paramount in soil acidity remediation and to increase crop yields in acidic tropical soils, but C emission to the atmosphere is increased by liming.

However, with increased plant growth, C is sequestered back to the soil. Hence the balance in soil C stock may be positive after liming.

If gypsum is used mixed to lime, it may further improve deep root growth and the balance of soil carbon.

Objective

To study changes in carbon storage in the soil profile and soybean yields as affected

by soil acidity amelioration under no tillage and conventional systems.

Materials and Methods

Treatments: (lime and silicate rates calculated to raise soil base saturation to 60%) control, lime, silicate, gypsum +lime and gypsum+silicate.

Soybean was planted after 30 days of treatment application

Soil samples:

Taken at depths of 0-10, 10-20, 20-40 e 40-60 cm, before soybean planting.

Analysis:

Soybean root weigh and C content at R6, yield at maturity. Soil C stock was calculated according to soil bulk density.

Results

Average soybean yield, root dy matter and root carbon content of soybean as affected by soil acidity amelioration under no till (NT) and conventional tillage(CS).

	Oasta	and a list	Destala		Root Carbon Content	
	Soybean	yield	Root dr	y matter		
Treatments	NT	CS	NT	CS	NT	CS
	kg ha ⁻¹		Mg ha⁻¹		Mg ha⁻¹	
Control	2272 bC	3297 aB	0,93 bD	1,09 aB	0,37 aD	0,41 aB
Lime	3090 bAB	3886 aA	2,74 aA	1,14 bAB	1,08 aA	0,42 bB
Silicate	2759 bB	3256 aB	1,04 bD	1,26 aB	0,34 bB	0,46 aB
Gypsum+Lime	3340 aA	3668 aAB	1,82 aB	1,74 aA	0,71 aB	0,66 aA
Gypsum+Silicate	3041 bAB	3665 aAB	1,39 aC	1,25 aB	0,53 aC	0,47 aB

Higher soybean yields under conventional tillage
Higher effect of gypsum on soybean yield under no-till
Lime and gypsum increased root dry matter
In general, more C in roots under no-till

Treatment means within a row followed by the same letter are not significantly different, (LSD, P<0.05). Lowercase letters compare the systems and capital letters compare soil acidity amelioration

Average soil carbon stock at 0-10, 10-20, 20-40 and 40-60 cm before soybean planting (November, 2012) as affected by soil acidity amelioration under no tillage (NT) and conventional system (CS).

	0-10 cm		10-20 cm		20-40 cm		40-60 cm					
Treatments	ΝΤ	CS	ΝΤ	CS	ΝΤ	CS	NT	CS				
Mg ha ⁻¹												
Control	32,9 a	24,2 b	28,4 a	23,2 b	35,5 a	20,9 b	22,3 a	19,0 b				
Lime	33,3 a	25,4 b	27,9 a	23,6 b	31,2 a	19,0 b	21,0 a	20,1 a				
Silicate	34,5 a	23,8 b	30,1 a	23,1 b	30,9 a	20,5 b	22,0 a	19,6 a				
Gypsum+Lime.	32,2 a	24,8 b	27,9 a	23,7 b	37,2 a	20,1 b	23,9 a	18,3 b				
Gypsum+Silicate	34,8 a	25,9 b	29,1 a	25,7 b	38,9 a	20,6 b	22,8 a	20,7 a				

Treatment means within a row followed by the same letter are not significantly different. (LSD, P<0.05).

Conclusion

3 months after tillage.

have an effect on soil C.

Soil acidity amelioration increases soybean root growth and yields.

Tillage area – 07/31/2012

Treatment applied 10/03/2012

Soybean sowing – 11/06/2012 Soybean crops – at R2 – 01/21/2013

Conventional tillage decreased soil C stocks

There was no time for soil amendments to

In the first year, soybean response to soil amelioration was better with tillage.

Soil tillage decreases soil C stock in a very short time (3 months)

Soybean harvest – 03/28/2013