THE OHIO STATE UNIVERSITY

Evaluation of partial resistance to Phytophthora sojae in a diverse collection of soybean cultivars, breeding lines, and plant introductions

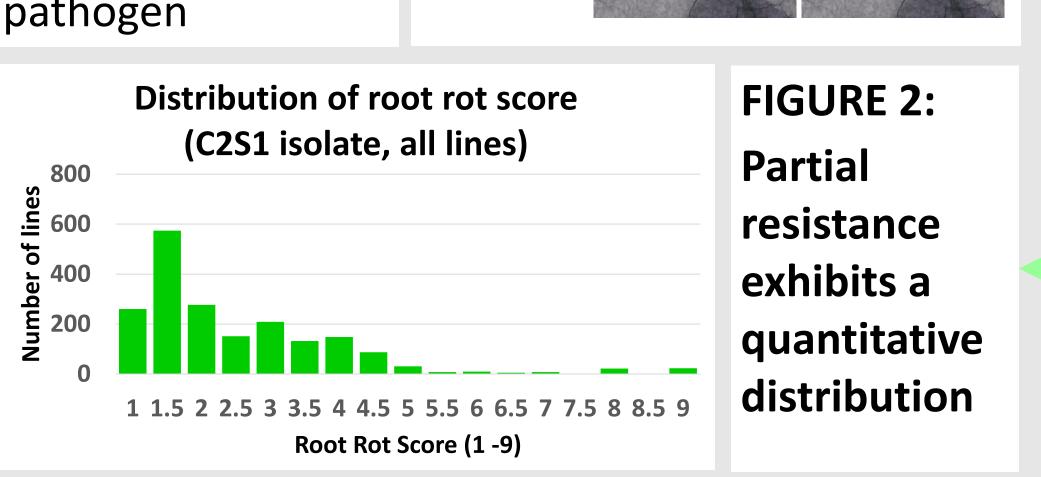
Rhiannon Schneider¹, Anne Dorrance², Leah McHale¹

¹Department of Horticulture and Crop science, The Ohio State University, Columbus, OH ²Department of Plant Pathology, The Ohio State University, Columbus, OH

Introduction

Phytophthora sojae is an oomycete pathogen of soybean (*Glycine max*) causing ~\$300 M Ο in crop losses annually in the US.¹ Plant genotype FIGURE 1: Example rps1b Ros1b

Management of *P. sojae* is through race-specific and/or quantitative (partial) resistance.


Race-specific resistance (conferred by only when Rps and *Rps*-genes) exhibits a gene-for-gene Avr alleles are relationship with the pathogen (Fig. 1). present in plant & In contrast, partial resistance is pathogen quantitatively inherited (Fig. 2) & generally controlled by many genes of small effect. Due to the diversity & rapid evolution 400 of *P. sojae* populations, partial resistance is theoretically more durable than racespecific resistance.

of gene-for-gene resistance. **X** Avr1b (Effector Resistance occurs present 🞖 avr1b (Effector

Root rot score is quantitatively distributed & skewed right. Fig. 2 shows the excess of lines with root rot scores < 2 for inoculation with isolate C2S1 in the first set of inoculations. This indicates possible race-specific resistance to C2S1. Lines with low root rot scores were labeled as "Group 2" and inoculated with a different isolate in the second set of inoculations.

	Root Rot Score	Plant Height	Root Weight	Shoot Weight	TABLE 1: Pearson's correlation between BLUP values.
Root Rot Score		<0.0001 (1) <0.0001 (2)	<0.0001 (1) <0.0001 (2)	<0.0001 (1) <0.0001 (2)	
Plant Height	-0.26 (1) -0.42 (2)		<0.0001 (1) <0.0001 (2)	<0.0001 (1) <0.0001 (2)	<i>Upper right</i> : significance of correlation (<i>p</i> -value).
Root Weight	-0.46 (1) -0.55 (2)	0.50 (1) 0.50 (2)		<0.0001 (1) <0.0001 (2)	The four traits are an significantly
Shoot Weight	-0.21 (1) -0.43 (2)	0.33 (1) 0.46 (2)	0.67 (1) 0.71 (1)		correlated with each other in group 1 & group 2.

absent

(race-specific resistance) (no resistance

South Korea has been proposed as the origin of the soybean-P. sojae pathosystem. Thus, Ο soybean lines from S. Korea may posses high levels of resistance².

Objectives

Evaluate partial resistance to *Phytophthora sojae* in three populations: 1. 293 breeding lines and cultivars from the OSU breeding program. 2.91 historically popular North American cultivars

3. 1,392 Plant Introductions from South Korea

Materials and Methods

TABLE 2: Genetic variance of each trait.

	INOCULATED					NON-INOCULATED				
	Group 1 (C2S1 isolate)		Group2 (C2S1 & Henry isolates)		Group 1 (C2S1 isolate)		Group2 (C2S1 & Henry isolates)			
	H ² *	Sig. of Genetic Variance (<i>p</i> -value)	H²	Sig. of Genetic Variance (<i>p</i> -value)	H ² *	Sig. of Genetic Variance (<i>p</i> -value)	H ²	Sig. of Genetic Variance (<i>p</i> -value)		
Root Rot Score	0.23	<0.0001	0.52	<0.0001	0.27	<0.0001	0.2	0.0024		
Plant Height	0.64	<0.0001	0.3	<0.0001	0.71	<0.0001	0.59	<0.0001		
Root Weight	0.46	0.0047	0.35	< 0.0001	0.63	<0.0001	0.53	<0.0001		
Shoot Weight	0.56	<0.0001	0.5	<0.0001	0.66	<0.0001	0.6	<0.0001		

Traits have moderate heritability & significant genetic variance for both inoculated and non-

inoculated treatments. *H² = broad sense heritability =genetic variance/ [(genetic variance + (var(error)/Number of Reps)]

Group 1 (C2S1 isolate)

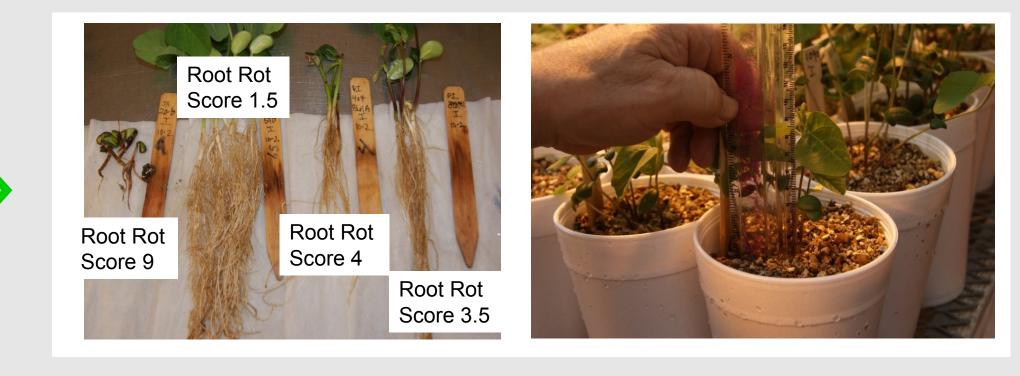
Group 2 (Henry & C2S1 isolates)

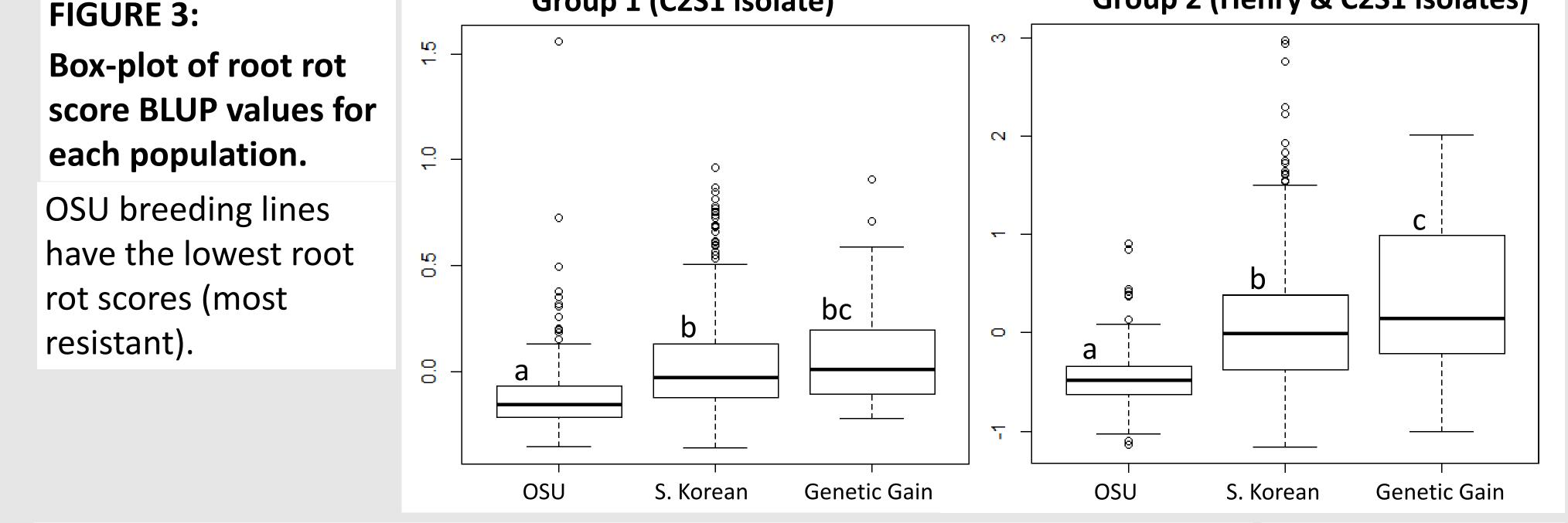
High levels of

1. Screen to select virulent & aggressive *Phytophthora sojae* isolates

b. Tray test ³ a. Hypocotyl test

2. Conduct layer test⁴ on 1,776 lines from three populations (see objectives).




4. Extract genotypic Best Linear Unbiased Predictors (BLUP) values.

Group 1 (both reps with isolate C2S1): Y= Class+ Genotype(Class)+ Rep+ Block(Rep)+ error

Group 2 (1st rep C2S1 & 2nd rep with HenryS.1) : Y= Class+ Genotype(Class)+Isolate+ Block(Isolate)+Isolate*Genotype(Class)+ error

3. Collect data: Root rot score, plant height, root & shoot weight.

TABLE 3: Extreme resistant and susceptible soybean lines.

Group 1 (C2S1 isolate)				Group 2 (C2S1 & Henry isolates)				resistance are	
Rank(of 1,044)*	Line	Root Rot Score	Population	Rank (of 736)	Line	Root Rot Score	Population	found mainly in the OSU	
1	M09-W148	1.5	OSU	1	M10-W232	1.5	OSU	population with	
2	PI 424309 A	1.5	S. Korean	2	M11-W208	1.5	OSU	some in the South	
3	M11-M055	1.5	OSU	3	M11-W116	2	OSU		
1042	PI 398867	9	S. Korean	734	PI 398310	9	S. Korean	Korean population	
1043	PI 398859	9	S. Korean	735	PI 424372	9	S. Korean	*Based on root rot score	
1044	M11-W118	9	OSU	736	PI 398604	9	S. Korean	BLUP values	

References

¹ Wrather, J., and Koenning, S., 2006. Estimates of disease effects on soybean yields in the United States 2003-2005. J Nematol. 38:173-180. ² Dorrance, A.E. and Schmitthenner, A.F. 2000. New sources of resistance to *Phytophthora sojae* in the soybean plant introductions. Plant Disease 84:1303-1308. ³ Wang, H., St.Martin, S.K., and Dorrance, A.E. 2012. Comparison of phenotypic methods and yield contributions of quantitative trait loci for partial resistance to *Phytophthora sojae* in soybean. Crop Sci. 52:609-622

⁴ Dorrance, A., Berry, S., Anderson, T., and Meharg, C., 2008. Isolation, storage, pathotype characterization, and evaluation of resistance for Phytophthora sojae in soybean. Plant Health. Prog.doi.10.1094/PHP-2008-0118-01-DG.

Acknowledgements

Assistance with phenotypic assays:

Colleagues and students from the McHale Lab, Dorrance Lab, Bob James, Branden Overstreet, Josh Abahazi, Lisa Sutton, Sarah Lewis, Allen Honerlaw, Adam Rine

Conclusions & Future Work

- High levels of partial resistance exist in OSU & South Korean germplasm.
- Significant genetic variation and moderate levels of heritability indicate selection for Ο improved resistance is feasible.
- Phenotypic & genotypic data will be combined for association mapping and studies on Ο genomic selection.