Evaluating N source and placement strategies to manage N₂O emissions in no-till corn

KANSAS STATE UNIVERSITY

Leonardo M. Bastos and Charles W. Rice

Kansas State University, Department of Agronomy.

Department of Agronomy

Introduction

N₂O emission

- Economical loss (~ 1-5% of applied N)
- 298x higher GWP than CO₂
- Negative environmental impact (global) warming, ozone layer depletion)

The highest fluxes occurred following rainfall events until tasseling stage. After that, even with

Objective

Evaluate N fertilizer strategies in order to mitigate N_2O emissions.

favorable soil moisture conditions, the fluxes were low due to corn uptake of N.

Date Fig 5. Daily N-N₂O fluxes in no-till corn during 2013 growing season. Vertical columns on the top represent precipitation. Black arrow represents corn planting and fertilizer application event.

Fig 6. Cumulative N-N₂O flux in no-till corn during 2013 growing season. Bars represent standard error. Treatments followed by a different letter were statistically significantly different (p < 0.05).

SSB + UAN emitted the most N_2O .

- Control, BC + UAN, BC + CU and SSB + UAN + I emitted the least N_2O .
- The use of nitrification inhibitor decreased N loss as N_2O by 66%.

Material and Methods

> Corn planted on May 16, 2013.

Fig 1. Nitrogen (N) cycle. Source: Doerge, 2002.

> 168 kg N ha⁻¹ were applied after planting.

Treatments

- Control
- Urea broadcasted (BC-U)
- Coated urea broadcasted (BC-CU)
- UAN surface-banded (SB-UAN)
- UAN subsurface-banded (SSB-UAN) UAN subsurface-banded + nitrification inhibitor (SSB-UAN+I) UAN broadcasted (BC-UAN)

Fig 2. Corn planting (a) and N fertilizer application: broadcasted urea and coated urea (b), surface-banded UAN (c), subsurface-banded UAN with and without nitrification inhibitor (d) and broadcasted UAN (e).

Gas sampling and analysis

Soil sampling

Grain Yield

SSB + UAN and SB + UAN were the highest yielding treatments.

BC + UAN was the lowest yield-based N_2O emission.

Fig 7. Grain yield (green) and yield-based N_2O emissions (blue) for each treatment. Bars represent standard error. Treatments followed by a different letter were statistically significantly different (p < 0.05). Lowercase letters were used to show differences in yield and uppercase letters in yield-based N₂O emissions.

Conclusion

The gaseous losses through N₂O vary depending on fertilizer source and placement.

Fig 3. Chamber setup for gas sampling (a) and gas chromatograph (b).

Other measurements

Soil temperature at gas sampling

Soil moisture at gas sampling

Fig 4. Soil sampling scheme with locations (a) and depths (b). Samples were analyzed for inorganic N $(NH_4^+ \text{ and } NO_3^-)$, data not shown.

N use efficiency: Δ kg N/ha uptake kg N/ha applied

This material was based upon work supported by the National Science Foundation under Award No. EPS-0903806 and matching support from the State of Kansas through Kansas Technology Enterprise Corporation.

