

University of São Paulo – Brazil

Soil compaction under different sugarcane management systems*

TOMAZ, H.V.Q. de¹; REICHARDT, K.²; SILVA, A.N. da¹; BEAUCLAIR, E.G.F. de³; ARTHUR, R.C.J.⁴; MELO, S.B. de⁵ and LIBARDI, L.G.P.⁶

- \diamond The fundamental role of soil preparation operations is to create ideal conditions for root growth.
- \diamond Changes that occur in the structure of the soil are recognized in soil bulk density, mechanical resistance to penetration, total porosity, soil

Water, Food, Energy e Innovation for a Sustainable World

storage and water availability values.

- \diamond Compaction, soil de-structuration and the reduction of organic matter content are considered the main factors inducing soil degradation.
- For the sugarcane production system, soil preparation is one of the \diamond most important management phases because the operations performed during the installation of the crop will influence sugarcane yield over several years (ratoons).
- Intense machinery traffic occurring during crop renewal added to \diamond successive mechanical operations during crop development intensify even more the compaction of the soil, even of deep layers. Knowing that sugarcane roots can reach depths of 5 m it becomes important to monitor soil compaction.

 \diamond At the 20-40 cm layer, treatment PPF (0.29 MPa) presented lower penetration resistance in relation to CON-S and MIN-S (1.36 and 1.56 MPa, respectively).

- \diamond For the 40-60 cm layer the DSP (0.45 MPa) treatment showed efficiency, once penetration resistance values were lower in relation to all other treatments.
- ♦ The lower values of penetration for PPF are due to the sub-soiling operation made with an implement called DRENO, in depth at the cane line, once the equipment breaks compacted layers in depth.

OBJECTIVE

Evaluating soil compaction under different soil preparation systems and crop spacing for sugarcane.

TREATMENTS

 \diamond Conventional (CON) and Minimum (MIN) tillage were combined with two spacing: Simple (S) of 1.5 m and Double (D) alternating 1.5 and 0.9 m, resulting treatments CON-S, CON-D, MIN-S and MIN-D, added to a deep soil preparation with double spacing (DSP), with a total of five treatments of Soil penetration.

♦ Measurements were taken within cane lines to be sure to be in the

CONCLUSION

30

♦ Penetration resistance

indexes were very **E** 40 promising for the deep soil preparation system **e** 50 Soi (DSP), where other 60 assessments also proved their efficiency in 70 comparison with other treatments. 80

-CON-S-CON-D-MIN-S-MIN-D-DSP

region where most of the roots develop, at depths of 0-20, 20-40,

40-60, 60-80 cm.

Seience **Crop Science** Conselho Nacional de Desenvolvimento SOCIETY OF AMERICA Society of America Científico e Tecnológico

90

(1)PhD student in crop production at ESALQ, University of São Paulo, Piracicaba, SP, Brazil Email: halanvieira@gmail.com; (2) Full professor, University of São Paulo, Piracicaba, SP, Brazil. Email: klaus@cena.usp.br; (3) Full professor, University of São Paulo, Piracicaba, SP, Brazil. Email: egfbeauc@esalq.usp.br; (4) PhD technician, Soil Physics Laboratory, CENA, University of São Paulo, Piracicaba, SP, Brazil. Email: egfbeauc@esalq.usp.br; (4) PhD technician, Soil Physics Laboratory, CENA, University of São Paulo, Piracicaba, SP, Brazil. Email: egfbeauc@esalq.usp.br; (4) PhD technician, Soil Physics Laboratory, CENA, University of São Paulo, Piracicaba, SP, Brazil. Email: egfbeauc@esalq.usp.br; (4) PhD technician, Soil Physics Laboratory, CENA, University of São Paulo, Piracicaba, SP, Brazil. Email: egfbeauc@esalq.usp.br; (4) PhD technician, Soil Physics Laboratory, CENA, University of São Paulo, Piracicaba, SP, Brazil. Email: egfbeauc@esalq.usp.br; (4) PhD technician, Soil Physics Laboratory, CENA, University of São Paulo, Piracicaba, SP, Brazil. Email: egfbeauc@esalq.usp.br; (4) PhD technician, Soil Physics Laboratory, CENA, University of São Paulo, Piracicaba, SP, Brazil. Email: egfbeauc@esalq.usp.br; (4) PhD technician, Soil Physics Laboratory, CENA, University of São Paulo, Piracicaba, SP, Brazil. Email: egfbeauc@esalq.usp.br; (4) PhD technician, Soil Physics Laboratory, CENA, University of São Paulo, Piracicaba, SP, Brazil. Email: egfbeauc@esalq.usp.br; (4) PhD technician, Soil Physics Laboratory, CENA, University of São Paulo, Piracicaba, SP, Brazil. Email: egfbeauc@esalq.usp.br; (4) PhD technician, Soil Physics Laboratory, CENA, University of São Paulo, Piracicaba, SP, Brazil. Email: egfbeauc@esalq.usp.br; (4) PhD technician, Soil Physics Laboratory, CENA, University of São Paulo, Piracicaba, SP, Brazil. Email: egfbeauc@esalq.usp.br; (4) PhD technician, Soil Physics Laboratory, CENA, University of São Paulo, Piracicaba, SP, Brazil. Email: egfbeauc@esalq.usp.br; (4) Physics Laboratory, CENA, Soil Physics Laboratory, Sidoratory, Sid SP, Brazil. Email: rcarthur@cena.usp.br; (5) Full professor, University of Semi-Árido. Email: stefeson@ufersa.edu.br; (6) Student of Agronomy at ESALQ, University of São Paulo, Piracicaba, SP. * Funds for this research were sponsored by the Brazilian National Research and Technology council (CNPq) through Grant number 484979/2011-6.