# Estimating Alfalfa's Impact on Regional N Budgets in the Santa Clara & Central Valley's of California Using the <sup>15</sup>N Stable Isotope Natural Abundance Method



Jarred Sturla<sup>1\*</sup>, Bruce Roberts<sup>1</sup>, Stuart Pettygrove<sup>2</sup>, Daniel H. Putnam<sup>3</sup>

<sup>1</sup>Department of Plant Science, California State University, Fresno, <sup>2</sup>Department of Land, Air & Water Resources (LAWR), University of California, Davis, <sup>3</sup>Department of Plant Sciences, University of California, Davis



# Introduction

- Alfalfa will utilize residual soil nitrogen (N) over N fixation when there is N present in the soil.
- Because of its deep root system which has been measured as far as 15ft below the soil surface, alfalfa has the potential to prevent or alleviate nitrate leaching into ground water

| Site<br>ID | Site Name  | Location                    | Soil Type                                               | Manure/Wastewater History                                                              | Year<br>Planted |
|------------|------------|-----------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------|
| 1          | Burrel     | Burrel, Fresno<br>County    | Colpien loam                                            | Dairy manure consistently from 1975-<br>2008, Lagoon H <sub>2</sub> 0 4 years prior    | 2008            |
| 2          | RY-4       | Visalia, Tulare<br>County   | Tranquility,<br>wet, complex,<br>saline sodic<br>(Clay) | Dairy manure 2007, Lagoon H <sub>2</sub> 0 Feb 2011                                    | Fall<br>2007    |
| 3          | Johns 80   | Tulare, Tulare<br>County    | Nord fine sandy loam                                    | 2012 & 2011 Chicken manure, 2010 Cow manure                                            | 2010            |
| 4          | Taggart 80 | Tulare, Tulare<br>County    | Colpien loam                                            | 2012 & 2011 Chicken manure, 2010 Cow manure, receives periodic lagoon H <sub>2</sub> 0 | 2010            |
| 5          | Tipton     | Tipton, Tulare<br>County    | Colpien loam                                            | Last manure app 3 years prior, 5 years prior 7 ton/ac, 6 years prior 8 ton/ac.         | 2010            |
| 6          | Los Banos  | Los Banos,<br>Merced County | Colpien loam                                            | No Dry manure, receives lagoon water irrigations                                       | Oct.<br>2010    |
| 7          | Hanford1   | Hanford, Kings<br>County    | Kimberlina fine<br>sandy loam,<br>saline-alkali         | Dairy manure spring 2012, 1 truckload per 3 ac.                                        | Feb.<br>2012    |
| 8          | Hanford2   | Hanford, King<br>County     | Remnoy very<br>fine sandy<br>loam                       | Dairy manure spring 2012, 1 truckload per 3 ac.                                        | Feb.<br>2012    |
| 9          | Roza4      | Tulare, Tulare<br>County    | Lakeside clay<br>loam, drained                          | 10 years prior dry manure, frequent lagoon water irrigations for many years            | 2012            |
| 10         | Roza2      | Tulare, Tulare<br>County    | Lakeside clay<br>loam, drained                          | 10-20 ton dry manure spring 2012                                                       | 2012            |



#### sources.

- Dairy manure is an invaluable nutrient source that is commonly applied to crops in California (CA).
- When manure is applied to fields there is a loss of N during ammonia volatilization. Often greater amounts of the lighter <sup>14</sup>N isotope is lost, leaving the soil enriched in <sup>15</sup>N.
- The natural abundance stable isotope method can be used to determine how well the alfalfa 'cleans' up the soil by determining the percentage of N derived from the atmosphere (%Ndfa).

# Purpose

In order to effectively use the BNF habits of legumes, it is important to have methods to quantify the amount of biologically fixed N.

Quantitatively determining the amount of N obtained from soil and from atmosphere can help estimate effects of field practices on  $N_2$  fixation.

Figure 1.  $\delta^{15}$ N content of alfalfa tissue in fields with and without a history of manure/wastewater applications.



Figure 2. Percent N derived from the atmosphere from fields with and without a history of manure applications.

## Objective

Determine N content and N isotope ratios on alfalfa and reference plant samples in order to estimate the %Ndfa.

# Methods

- Study conducted within Fresno, Kings, Merced, Tulare and Santa Clara Counties, California
- Complete Randomized Design
- Treatments: Manured fields: 10 replications Non-manured fields: 7 replications
- 3, 3 ft x 3 ft plots of sudan grass planted in random locations at each site (sub-sample)
- Samples were taken two times during growing season, 1<sup>st</sup> from June to August & 2<sup>nd</sup> from September to October
- Sampled with 2 ft. x 2 ft. frame from the crown of the plant. Samples were taken as close as possible to harvest

### Calculations

•The equation used in determining  $\delta^{15}N$ , is  $0^{0}/_{00}$  (parts per thousand) on the  $\delta$  scale, where  $R = {}^{15}N/{}^{14}N$  and R standard is the standard of air R = 0.0036765:

 $\delta^{15}N = 1000(R Sample-R Standard/R Standard)$ 

•The equation used for estimating the relative concentration of nitrogen fixed from the atmosphere in relation to the total nitrogen in plants:

 $\% \text{Ndfa} = (\delta^{15} \text{N}_{\text{ref}} - \delta^{15} \text{N}_{\text{fix}}) / (\delta^{15} \text{N}_{\text{ref}} - \delta^{15} \text{N}_{\text{of N2}}) - (\delta^{15} \text{N}_{\text{ref}} - \delta^{15} \text{N}_{2 \text{ fix}}) / (\delta^{15} \text{N}_{\text{ref}} + 0.68)$ 



# Results

- The age of the alfalfa stand did not have an influence on the  $\delta^{15}N$  content, %Ndfa and N content of alfalfa tissue.
- There was not a significant difference in the %Ndfa and δ<sup>15</sup>N content between the 1<sup>st</sup> and 2<sup>nd</sup> sampling dates, although the N content in the 2<sup>nd</sup> sampling dates was higher than in the 1<sup>st</sup>.
- There was not a significant difference of N content of alfalfa tissue (ug/g of sample) between the fields with a history of manure/wastewater applications and fields with no manure application history.
- There was a significant difference in the N content of alfalfa tissue amongst the fields with a manure applications history.



#### date

- Alfalfa samples were taken in close proximity to non legume reference plant sample
- Plant samples were ground to a fine powder and weighed to 3.5-4.0 mg on a microbalance
- Samples submitted to UC Davis Stable Isotope lab
- Combustion technique used to determine N content
- Isotope ratio mass spectrometry used to measure <sup>15</sup>N/<sup>14</sup>N isotope ratio

Photograph of sudan grass reference plot in<br/>alfalfa field.Red markers represent fields with a manure<br/>application history, yellow markers represent<br/>fields with no manure application history.

There variation of the results in the manured fields is most likely due to the difference in the field's manure application history.
The natural abundance method can be used in estimating small amounts of <sup>15</sup>N via isotope ratio mass spectrometry.
Alfalfa can utilize residual soil N from manure giving it the potential to prevent nitrate leaching.
Further studies could be conducted looking at the δ<sup>15</sup> N content at different levels in the soil.