Evaluation of Cool-Season Turfgrass Species Mixtures for Roadsides

Joshua Friell, Eric Watkins, Brian Horgan, and Maggie Reiter University of Minnesota, St. Paul, Minnesota 55108

frie0250@umn.edu website: http://www.turf.umn.edu

Introduction

- Mowed turfgrass is, and will continue to be, a part of the solution for creating roadsides that are both functional and sustainable
- In cold weather climates, high salt loads from road deicing practices necessitate the use of salt-tolerant turfgrasses
- Use of multi-species assemblages is known to improve overall performance of turfgrass stands
- Identification of mixtures capable of long-term persistence on roadsides in cold-weather climates is necessary

Objectives

Assess roadside survival ability of turfgrass mixtures containing salt-

Figure 2. Depiction of range of roadside performance in the roadside mixture trial at St. Paul in spring 2012

Data Collection and Analysis

- Digital images were collected for each plot at both roadside mixture sites with a custom-built light box in spring 2012 and summer 2012
- Images were analyzed for percent green tissue using a custom script written in Image Processing Toolbox (MATLAB) to identify the percent of the ground area covered in green plant tissue

Spring 2013

- The top 4 mixtures (7, 16, 18, and 14) all contained slender creeping red fescue and maintained a maximum of 45.8% green ground cover
- None of the best mixtures included significant proportions of tall fescue
- Grid-intersect data showed a significant and site-dependent effect of distance from the road on the probability of retaining living turfgrass cover (Fig. 6)

		Spring 20	13		
mix7 mix16	I	1	1	 	<u> </u>
mix18 mix14					
mix4 mix17 mix50 mix30					
mix24 mix49 mix13			· · · · ·		
mix13 mix27 mix28				•	

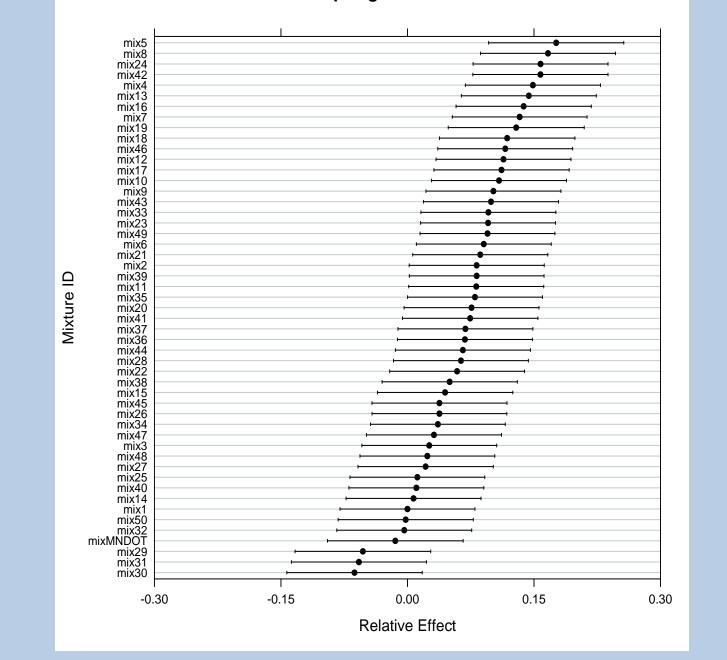
- tolerant cultivars
- Evaluate the effect of individual species on the performance of each mixture
- Identify spatial trends in survival of roadside plantings

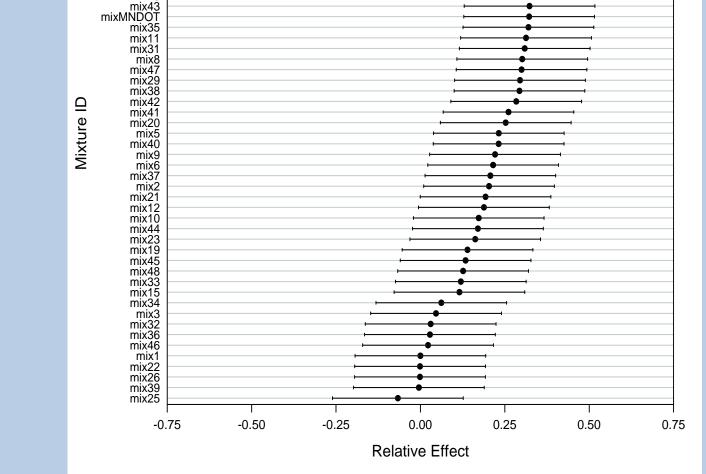
Materials and Methods

Mixtures

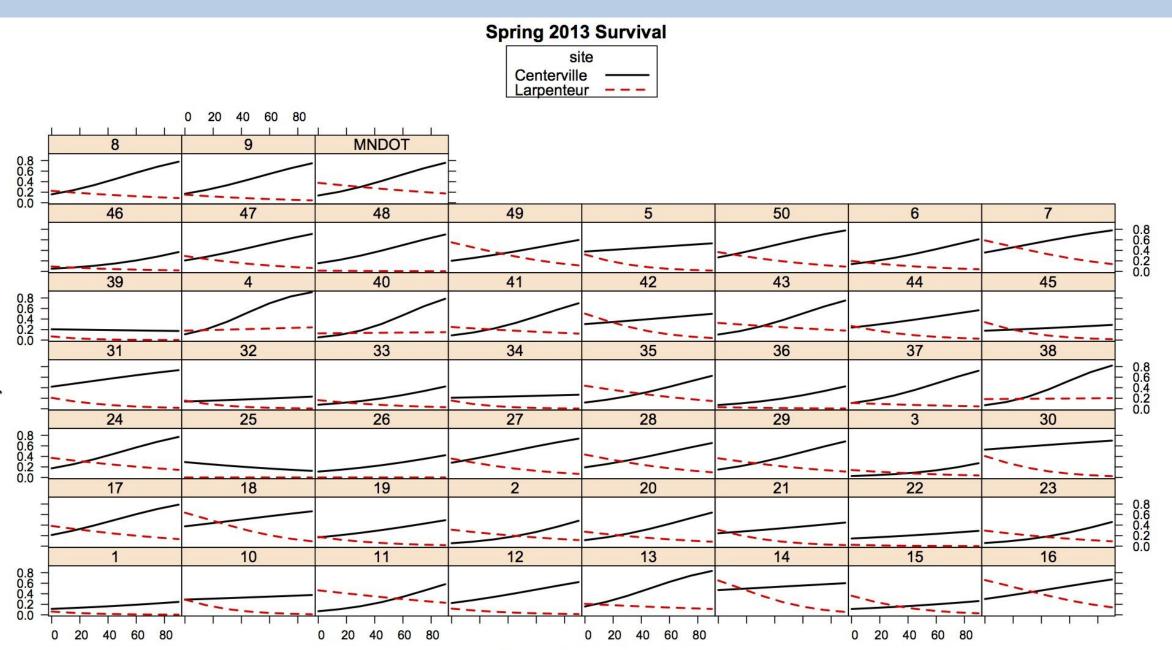
- A total of 9 species were used, with cultivars previously evaluated for salt tolerance and roadside use^{1,2}(Table 1)
- 51 mixtures of cool-season turfgrasses were defined, each containing 3 to 6 species with a maximum of 40% for any one species (Table 2)
- Mixtures were defined using *adxxvert* and *proc optex* in SAS software

Species	Cultivar	Mixture	STCRF	ALK	KBG	CBG	SHF	HDF	SLCRF		CHF
Strong creeping red fescue (STCRF) Festuca rubra ssp. rubra	Navigator	1						0.40	0.20	0.40	0.4
-		3					0.20	0.40		0.40	
Alkaligrass (ALK) Puccinellia spp.	Salty	4					0.20	0.40	0.20	0.40	0.4
		5					0.20	0.40	0.20	0.20	0.2
Kentucky bluegrass (KBG) Poa pratensis L.	MoonlightSLT	6				0.20	0.40	0.40	0.40	0.20	0.4
Creeping bentgrass (CBG)		7				0.20		0.40	0.40		
Agrostis stolonifera L.	Mariner	8				0.40			0.40		0.2
Sheep fescue (SHF)		9				0.40	0.40				0.2
Festuca ovina L.	MarcoPolo	10				0.40	0.40			0.20	
Hard fescue (HF)	2	11			0.07	0.07	0.40	0.40	0.07		
Festuca trachyphylla (Hack.) Krajina	Beacon	12			0.20				0.40		0.4
Slender creeping red fescue (SLCRF)	G1 1'	13			0.20			0.40			0.4
Festuca rubra ssp. litoralis	Shoreline	14			0.20	0.40		0.20	0.20		
Tall fescue (TF)	Granda II	15			0.40			0.20		0.40	
Festuca arundinacea Schreb.	Grande II	16			0.40			0.20	0.40		
Chewings fescue (CHF)	TCP (Padar)	17			0.40	0.07		0.40	0.07	0.07	
Festuca rubra L. ssp. fallax (Thuill.) Nyman	TCP (Radar)	18			0.40	0.07	0.40		0.07	0.07	
Table 1. Top-performing cultivars previously evaluated for salt		19			0.40	0.20					0.4
tolerance and roadside use		20			0.40				0.40		
		21		0.07		0.07	0.40			0.07	0.4
		22		0.07	0.07	0.40				0.40	0.0
		23		0.20			0.40			0.40	
		24		0.20			0.40		0.40		
		25		0.40					0.40	0.20	0.4
		26		0.40				0.40	0.40	0.20	0.2
	the.	27		0.40				0.40		0.20	0.2
	All the second	28		0.40		0.40		0.40	0.10	0.20	
	AND	29 30		0.40	0.20	0.40	0.40	0.10	0.10		
		31		0.40	0.20 0.40	0.07	0.40		0.07		
MARCH AND		31	0.10	0.40	0.40	0.07	0.07		0.07	0.10	0.4
		33	0.10			0.40	0.12	0.12	0.12	0.10	0.4
		34	0.12			0.12	0.12	0.12	0.12		
AND THE SAME AND THE AND A DECIMAL AND A		35	0.20			0.40		0.40	0.40	0.40	
	NAMES AND	36	0.20		0.40	0.10		0.10		0.20	0.2
		37	0.20		0.40	0.40				0.20	0.2
ACTIVITY I		38	0.20		0.20	1	0.20				
THE LEAD		39	0.20							0.40	
		40		0.33					0.33		
	A COMPANY OF A COMPANY	41	0.40					0.40	0.20		
Kath Stalls		42	0.40				0.20		0.40		
		43	0.40			0.20		0.20			0.2
		44	0.40			0.40			0.20		
	ANTER LAN	45	0.40		0.07		0.40		0.07	0.07	
		46	0.40		0.20					0.40	
		47	0.40		0.40			0.20			
		48	0.40	0.20							0.4
		49	0.40	0.20				0.20		0.20	
				0.40			0.20				
		50	0.40	0.40			0.20				


- Data was combined, arc-sin transformed, and fit with a linear mixedeffects model for spring 2012 (Fig. 3) and summer 2012 (Fig. 4) using The R Project for Statistical Computing
- The grid intersect method was used to determine percent cover of living turfgrass and grid coordinates of surviving plants in spring 2013
- Grid count data were analyzed using multiple linear regression and spatial analysis was conducted using binomial regression in The R Project for Statistical Computing (Fig. 5)

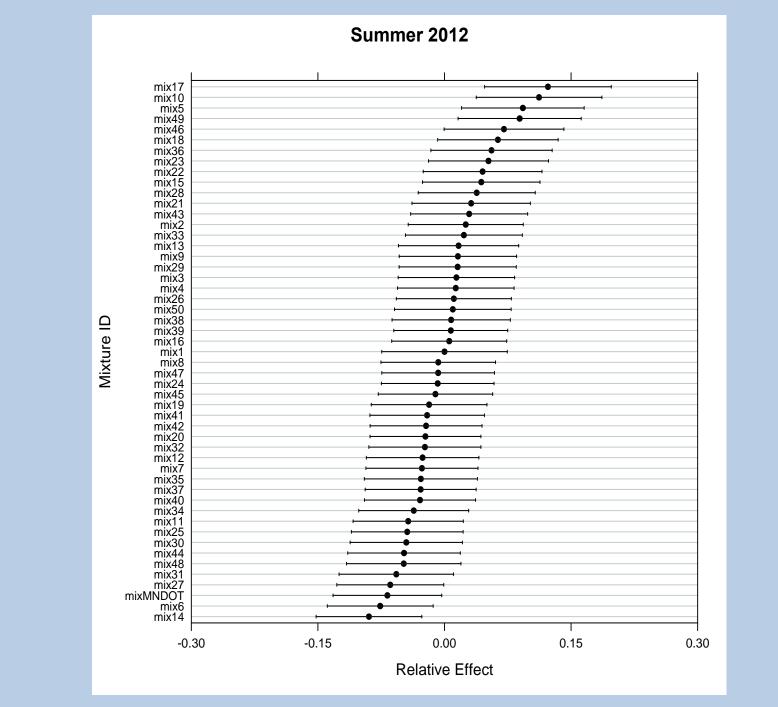

Results

Spring 2012


The top 3 mixtures (5, 8, and 24) all contained 40% slender creeping red fescue and maintained a maximum of 61.5% green ground cover Mixtures 29, 30, 31, and a mixture developed using recommendations from the Minnesota Department of Transportation were found to be the worst-performing in the trial, and these mixtures contained 40% alkaligrass in combination with large proportions of either Kentucky bluegrass or creeping bentgrass

Spring 2012

Figure 5. Regression coefficients from final model of the percent cover data from spring 2013 in the roadside trial


Experimental Design and Establishment

In fall 2011, sites were sprayed with RoundUp and Momentum FX herbicides to kill existing vegetation, soil was tilled, and a starter

Figure 3. Regression coefficients from final model of the percent cover data from spring 2012 in the roadside trial

Summer 2012

- The top 3 performing mixtures (17, 10, and 5) contained distinct species from one another and thus reveal no obvious trend; however, each of them included the maximum 40% of one of the fine fescue species
- Tall fescue was often the primary living turfgrass

Distance From Curb (cm

Figure 6. Spatial trends analysis for survival in the roadside turfgrass experiment

Conclusions

- Mixtures 4 and 5, which included several fine fescues and some tall fescue, were identified as being the most persistent
- Mixtures containing large proportions of Kentucky bluegrass, creeping bentgrass or alkaligrass did not perform well
- Mixtures with tall fescue showed best summer performance, but did not survive well into spring 2013 likely due to winter ice cover
- Overall, mixtures containing fine fescues along with small amounts of tall fescue and Kentucky bluegrass exhibited greatest promise for survival on roadsides
- Spatial analysis revealed survival vs. distance from road differs by site, indicating potential topographical effects on survival
- Long-term fluctuation in environmental conditions demonstrates the necessity for including multiple species in a mixture with each species possessing a unique stress tolerance

References

Friell, J., E. Watkins, and B. Horgan. 2012. Salt tolerance of 75 coolseason turfgrasses for roadsides. Acta Agriculturae Scandinavica 62:44-52.

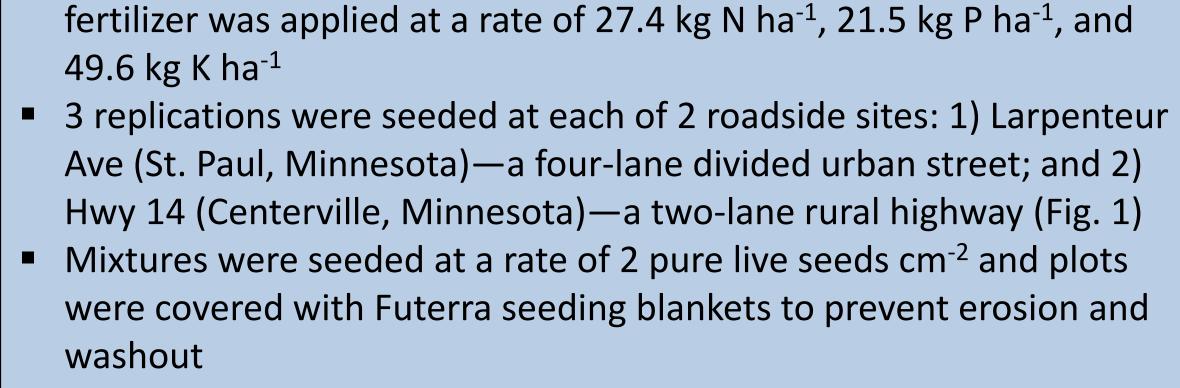


Figure 4. Regression coefficients from final model of the percent cover data from summer 2012 in the roadside trial

Friell, J., E. Watkins, and B. Horgan. 2013. Salt tolerance of 74 turfgrass cultivars in nutrient solution culture. Crop Science 53:1743-1749.

Funding for this project was provided by the Local Road Research Board

and the Minnesota Department of Transportation.

