

Identification, characterization and mapping of a new leaf rust (Puccinia triticina) resistance gene in spring wheat (Triticum aestivum)

Boyce M^{1,2}, Brule-Babel A¹, Hiebert C², McCallum B²

¹Department of Plant Science, University of Manitoba; ²Cereal Research Centre, Agriculture and Agri-Food Canada

between 5-15%⁴ and epidemic losses of upwards of 65%⁵

- Annual western Canadian losses estimated at \$88 \bullet million from 2001 – 2005⁶
- 60+ leaf rust resistance genes identified to date, most of \bullet which confer race specific resistance
- A series of near-isogenic wheat lines were developed in a Thatcher background, each with a single leaf rust resistance gene used for: world-wide virulence surveys, genetic studies of resistance genes, and host/parasite interaction experiments (Dr. Peter Dyck, Cereal Research Centre, AAFC, Winnipeg, Canada)
- After 2000, TDBG, a predominant race of leaf rust ulletdemonstrated avirulence to some lines of the Tc-Lr1 near isogenic line (NIL) in a characteristic mesothetic infection type
- The Tc-*Lr1* NIL (RL6003) was demonstrated to contain

Figure 2. Preliminary linkage map created using MapDisto for SNP and SSR markers linked to *LrCen*.

 Table 2. BLAST results for 133 linked SNP (Illumina Infinum)
 assay) marker sequences against the Wheat Survey Sequence to determine the best putative chromosome location.

an additional resistance gene in some lines which segregated independently of *Lr1*, this gene was temporarily designated *LrCen*

- TDBG also demonstrates avirulence to the Tc-*Lr14a* and \bullet Tc-*Lr20* NILs as well as Little Club, thought to be a universally susceptible cultivar
- A doubled haploid population of Tc-*LrCen*/Sumai3-*lr34* was developed to further study this gene
- Preliminary phenotypic data on a diverse set of Canadian wheat lines indicate this gene may be widely distributed within the Canadian hard red spring wheat germplasm

Objectives

1. To phenotypically characterize the leaf rust resistance gene, *LrCen*, derived from the Tc-*Lr1* NIL

2. To map the leaf rust resistance gene and identify usable markers for marker assisted selection

II - X	$11 - 1^{-1}$	
		11 – 5
	· · · /-	

Figure 1. Phenotypic reactions observed on seedlings from the Tc-*LrCen*/Sumia3-*Lr34* doubled haploid population inoculated with leaf rust race TDBG, avirulent to *LrCen*.

	2. Mapping process	3. In progress
1	 Marker association Illumina Infinium [®] 90K SNP array Filter SNP markers - GenomeStudio[®] Initial two-point linkage 	 Allelism test LrCen X Lr20 LrCen X Lr14a LrCen X Little Club

- Little Club X Lr20
- Lr14a X Lr20
- Lr14a X Little Club

Distribution of LrCen • Track in CWRS

• Develop KASPas SNP markers using the

linked Infinium markers

sequences from the

Phenotype a panel of

with race TDBG

CWRS wheat varieties

BLAST match order for 7AL	Number of SNPs	Percent of linked SNPs
Best match	101	76%
Second best match	14	11%
Third or worse match	15	11%
No match	3	2%

Preliminary Conclusions

1. Preliminary marker data indicate a putative map location for *LrCen* on the long arm of chromosome 7A.

- 3. Perform allelism testing with *Lr14a* (7B), *Lr20* (7A) and Little Club
- 4. Determine the distribution of *LrCen* within Canadian hard red spring wheat (CWRS) germplasm

References

¹FAOSTAT, 2012. <u>http://faostat.fao.org/site/339/default.aspx</u>; ³Oelke LM, Kolmer JA (2005) Phytopath. 95:773-778; ⁴Chu CG, Friesen TL, Xu SS, Faris JD, Kolmer JA (2009) Theor Appl Genet. 119:263-269; ⁵Singh A, Pallavi JK, Gupta P, Prabhu KV (2011) Plant Breeding 130:31-34; ⁶McCallum BD, Fetch T, Chong J (2007) Aus J of Ag Res 58:639-647; ⁷McCallum BD, Hiebert C (2012) PAG XX, January 14-19, 2012, San Diego, CA;

Confirm and map location Chr.-specific SSR markers Map using MapDisto⁸

Wheat survey sequence

Putative chr. locations for SNPs

Results

BLAST

Table 1. Phenotypic segregation of *LrCen* within the Tc *LrCen*/Sumai3-*lr34* DH population inoculated with race TDBG.

Resistant	Susceptible	Expected	P-value
lines	lines	ratio	
108	84	1:1	0.081

2. The Tc-*Lr20* NIL appears to carry two genes, one of which appears to be *LrCen*. The relationship between these genes will be examined in future work.

3. Preliminary phenotypic infection data with race **TDBG indicate** *LrCen* is widely distributed within the Canadian hard red spring wheat germplasm.

Acknowledgements

I would like to acknowledge ARDI and the Willy Wiebe Fellowship for funding. I would also like to thank Mira Popovic, Jadwiga Budzinski, Mary Meleshko, Maria Stoimenova and Epifania Austria for technical support.

Agriculture and Agri-Food Canada, Cereal Research Centre, 195 Dafoe Road, Winnipeg, Manitoba R3T 2M9 Email : boycem@agr.gc.ca