

INTRODUCTION

- Imidacloprid (IMD, Fig.1) is a systemic insecticide applied to Florida citrus trees as a soil-drench to control the Asian Citrus Psyllid (ACP) Diaphorina citri (Kuwayama), primary vector of the citrus greening disease (CG) (Fig.2). IMD has a high aqueous solubility and low partition coefficient (K_{OC}) values (¹).
- We have studied IMD environmental fate in Florida Flatwoods soils after soil-drench applications to control ACP.

UNIVERSITY of FLORID

• The objectives of this study were to characterize IMD sorption and degradation in citrus production areas in Florida Flatwoods soils, to monitor IMD leaching from the root zone, to develop a practical citrus leaf tissue extraction procedure and analytical method, to estimate plant uptake, and to correlate ACP control with tissue concentrations.

Fig.2. Citrus Greening Symptoms and ACP (²).

HYPOTHESES

- IMD has a high leaching potential in Florida Flatwoods soils (Immokalee Fine Sand, *IFS*) after soil-drench applications due to its low sorption coefficients (K_{OC}).
- IMD is moderately persistent in IFS soils because of its high half-life $(t_{1/2})$ measured in the laboratory.
- IMD leaching out of the root zone will negatively affect the control of the Asian Citrus Psyllid (ACP).
- ACP populations (immatures and adults) will show an inverse relationship with IMD concentrations in citrus leaf tissue.

MATERIALS AND METHODS

- **1. Sorption Isotherms**: soil samples from 5 depths (0-15, 15-30, 30-45, 45-60, 60-75 cm) from IFS (sandy, siliceous, hyperthermic Arenic Haplaquods) were equilibrated for 24 h with 4 IMD levels (2, 4, 6, and 8 μ g g⁻¹ in 0.01 M CaCl₂) and K_D values were calculated.
- **2. Degradation Study**: Soil samples from 5 depths (Table 1) were spiked with 10 µg IMD g⁻¹. The samples were kept at field capacity $(\theta_v=0.1)$ and at room temperature in the dark. IMD concentrations in soil samples were extracted periodically during 17 months.
- **3. Leaching Study**: IMD (and Br⁻ as tracer) were soil-drenched (Fig.3) to young Hamlin orange trees at the University of Florida Southwest Florida Research and Education Center, Immokalee. Soil samples were taken from the root zone (**Planted Area**, **PA**. Fig.3), and from nearby soil with no citrus roots (Non-Planted Area, NPA). Both areas were under the same micro-sprinkler irrigation system.
- **4. Systemic Pest Control:** ACP adult and nymph populations were monitored during 8 weeks after IMD application using the *tap sample* technique $(^3)$, and taking leaf tissue samples.
- **5. IMD in Citrus Tissue**: We have developed a fast and simple extraction protocol using Methanol (MeOH) and cell disruption using Bullet Blender (Next Advance Inc.). The extracts were filtered with syringes before HPLC MS/MS analysis.

HPLC ANALYTHICAL METHODS

1. IMD in soils (during degradation and leaching experiments) were extracted with MeOH:Water (80:20), with a 1:2 soil:solution ratio (⁴). We used an Agillent HPLC with UV detection (270 nm), MeOH:Water (40:60) as mobile phase, 1.0 mL min⁻¹ flow, and Supelco LC-18 Column. LOD and LOQ (limits of detection & quantitation) were in **ppm** level ($\mu g g^{-1}$).

Imidacloprid Fate and Transport in Florida Flatwoods Soils during Control of the Asian Citrus Psyllid

Jorge A. Leiva¹, Peter Nkedi-Kizza¹, Kelly T. Morgan¹, Jawwad A. Qureshi², and Thomas A. Obreza¹ (¹) Soil and Water Science and (²) Entomology and Nematology Department, University of Florida

Molecule.

2. IMD in *citrus tissue* was extracted using 0.25 g of dry mass and 10 mL of MeOH. The extract was diluted 1:1 with HPLC grade water and filtered before HPLC MS/MS analysis (⁵). LOD and LOQ were in *ppb* level (ng g⁻¹).

Fig.3. Imidacloprid (and Br⁻) Soil-Drench Application to Young Hamlin Orange Trees Root Zone (PA).

RESULTS AND DISCUSSION

- Sorption Isotherms and Degradation: Table1 summarizes IMD sorption data indicating low K_D values especially for the E horizon. • The Ap and Bh horizons had higher (and similar) K_D values than the E
- horizon due to higher organic carbon content (OC, Table 1). The data followed **zero-order degradation** rate (k) at all depths (Table 1). Consequently IMD average half-lives $(t_{1/2})$ varied between 0.86 and 2.28 years.
- The highest and the lowest $t_{1/2}$ were measured in the E horizon (30-45) cm) and the Bh horizon (60-75 cm), respectively.

Table 1. IMD Sorption Coefficients (K _D , K _{OC}) and Half-Lives (t _{1/2}) at Different Depths in IFS. 95% Confidence Interval Shown.					
Depth (cm)	K _D (mL g⁻¹)	K _{oc}	OC (g g ⁻¹)	<i>k</i> (µg g ⁻¹ day ⁻¹)	<i>t</i> _{1/2} (years)
0-15 (Ap)	1.66 ± 0.09 a	208 ± 11	0.008	0.011 ± 0.002	1.24 ± 0.23
15-30 (E1)	0.31 ± 0.02 b	163 ± 8	0.002	0.008 ± 0.001	1.71 ± 0.22
30-45 (E1)	0.23 ± 0.01 c	230 ± 14	0.001	0.006 ± 0.001	2.28 ± 0.39
45-60 (E2)	0.08 ± 0.002 d	13.3 ± 0.4	0.006	0.014 ± 0.002	0.98 ± 0.14
60-75 (Bh)	1.59 ± 0.06 a	63 ± 2	0.025	0.016 ± 0.002	0.86 ± 0.11

IMD Leaching: The leaching profiles in Fig.4 show IMD relative concentrations at different depths as a function of time (days after application).

Note that at most sampling dates *concentrations were higher for NPA than PA*. This is related the citrus *roots uptake*.

Also, the Br⁻ tracer was completely leached out from the soil profile (data not shown) about 8 days after application.

Fig.4. IMD Relative Concentrations (C/C_0) with Depth at Days 5, 8, 14, and 28 After Application for PA and NPA. Summer 2011.

- **ACP Systemic Control:** IMD controlled ACP (adults and on the same trees where the leaching study was conducted.
- The systemic action on the ACP began about 2 weeks after the soil-drench application, but persisted for up to 7 weeks (Fig.5).

t (Days)

- **Fig.5.** IMD Systemic Control on the ACP (Adults Tap⁻¹ Tree⁻¹) and Leaf Tissue Concentrations ($\mu g g^{-1}$) as a function of time.
- **IMD in Citrus Tissue:** The methods developed for IMD determination in citrus tissue have shown better results using HPLC-MS/MS analysis compared to HPLC-UV.
- Data in citrus tissue show close agreement with IMD concentrations in soils and the systemic control of ACP.
- The peak of IMD tissue concentration (Fig.5) was about 1 week after the application, one week before the ACP adults counts declined to very low values (2-3 weeks after application).

CONCLUSIONS AND RECOMMENDATIONS

- IMD low K_D and long $t_{1/2}$ values indicated that it has a high potential for **leaching** below the root zone, but persistent in Immokalee Fine Sand.
- IMD was mobile in the soil profile but slower than the Br tracer which is not adsorbed (Br leached out about 1 week after application). IMD leached out of the root zone about 4 to 7 weeks after application.
- IMD showed effective systemic control of the ACP two IMD had leached out of the root zone.
- IMD in citrus tissue data are in close agreement with the ACP control and the IMD soil leaching data.
- IMD efficacy to **control ACP could be improved** by further retarding its movement in the citrus root zone through soil amendments, by close monitoring of application rates, supplemental irrigation and rainfall events.

ACKNOWLEDMENTS: We thank our collaborators during HPLC method development for this study: Mr. Kafui Awuma (UF-IFAS, Soil and Water Science), Dr. Wlodzimierz Borejsza-Wysocki (UF-IFAS, IR-4 South), and Mr. Victor S. Bauder (UF-Food & Environ. Toxicology Lab, IR-4 South).

REFERENCES

- 1. Gervais, J.A., B. Luukinen, K. Buhl, and D. Stone. 2010. Imidacloprid Technical Fact
- Sheet. NPIC. Oregon State Univ. Extension Services. 2. APS (American Phytopathological Society), 2012. Candidatus Liberibacter asiaticum affecting orange. Online.
- http://www.apsnet.org/publications/imageresources/Pages/IW00006.aspx
- 3. Qureshi, J.A., and P.A. Stansly. 2007. Proc. Florida State Hort. Soc. 120:110-115.
- 4. Baskaran, S., R.S. Kookana, and R. Naidu. 1997. J. Chrom. A. 787:271-275.
- 5. Fernandez-Alba, A.R., A. Tejedor, and A. Aguera. 2000. J. AOAC Int. 83:748-755.

immatures) for several weeks. Fig. 5 shows data for Spring 2012,

weeks after application and persisted for 7 weeks even though