

Agriculture

Agri-Food

and

Agriculture et Agroalimentaire Canada

Canada Water Discharge, Nitrogen and Phosphorus Losses & Crop Production in Response to Phosphorus Drawn Down in High P Soil under Free Drainage and Water Table Control **Systems**

Tan, C.S., Zhang, T. Q. and Welacky, T. W. AAFC, GPCRC, Harrow, ON, Canada

Chin.tan@agr.gc.ca

ASA, CSSA and SSSA International Annual Meetings, Tampa, Florida, Nov. 3-6, 2013

Introduction

>Phosphorus (P) loss in tile drainage water from poorly structured clayey soils has increasingly become a concern, due to well-developed preferential flow, especially under reduced or notillage practice.

> Phosphorus can be a key nutrients governing eutrophication of fresh water bodies.

- >The status of P in long-term fertilizer soils must be determined to assess fertilizer P needs and ensure environmental quality.
- \geq Over 70% agricultural soils are tile drained in Ontario.
- The drainage tiles are designed to remove excess surface and soil water. Unfortunately, this approach can increase non-point source agricultural sediments and nutrients into surface and ground water sources.
- >Increasing incidences of drought ad/or climate extremes in Southern Ontario have had serious negative impacts on environment (i.e. potentia leaching for unused residues of nutrients) anc field crop production.
- >Hence, new agricultural practices must be developed to reduce soil erosion and promote more efficient use of soil water and nutrients by crops. To address these issues, an integrated reservoir-water table control and water recycling system was conducted.

Corn and soybean rotation; Corns were planted in the spring of 2008 and 2010. Soybeans were planted in the spring of 2009 and 2011.

Objectives

The objective of this study is to investigate the impacts of phosphorus drawn down on nutrient losses and crop production in high P soil under free drainage and water table control-water recycling systems in a corn-soybean rotation.

Materials and methods

Experimental Site & Soil Type: The site is located on a Brookston Clay loam (28 % sand, 35 % Silt, 37 % clay) at the Eugene F. Whelan Experimental Farm, AAFC, Woodslee, Ontario.

> Treatments

The treatments included a P drawn down (inorganic fertilizer N and K), a inorganic

> Fertilizer application

Corn phase: The inorganic fertilizer control was applied at the rate containing 50 kg P/ha, 200 kg N/ha and 100 kg K/ha in available forms. The P drawn down applied same rates of N and K but with no P addition. Soybean phase: No fertilizer was added.

>Water application

The controlled drainage/sub-irrigation (CDS) irrigated by was plot maintaining a water table level at 40 cm below soil surface using subirrigation water recycling system through regular tile drainage during the growing season.

Results & Discussion

Surface run-off and sub-surface drainage

Traditional free drainage (DR) had lower surface run-off volume than the controlled drainage/subirrigation (CDS) treatments. on the other hand, the sub-surface drainage volume under DR system had much higher values than the CDS system.

The P drawn down (DD) treatment had low cumulative total (surface + tile) water discharge combined with DR and CDS system than inorganic fertilizer control (IF) treatment.

Flow weighted mean N & P concentrations

The flow weighted mean N concentration in both surface runoff and sub-surface tile discharge water under DD treatment had much higher values than IF treatment. The reverse was true for flow weighted mean P concentration.

> Total N & P losses

The DD treatment had the higher cumulative total N and lower cumulative total P losses than the IF control. The CDS system reduced total cumulative N and P losses by 50 % and 7 %, respectively, relative to DR system.

fertilizer control (inorganic fertilizer N, P, and K), and two water management strategies (traditional free drainage, DR vs. controlled drainage/sub-irrigation water recycling, CDS) with two replications in a factorial design.

Corn & Soybean yields

The DD treatment had higher corn yields than IF control treatment. However, the DD treatment had low soybean yields relative to IF control treatment

Acknowledgement

The research has bee supported by A-based fund from AAFC. Appreciation is also expressed to Mr. M. Soultani, Mr. K. Rinas, Mr. G. Stasko and Dr. T. Oloya.

