UNIVERSITY of FLORIDA

Introduction

Potassium (K) soil test based fertilizer application is essential in Florida sandy soils with exchangeable soil K ranging from very low to medium. Current UF/IFAS K₂O fertilizer recommendations for tomatoes ranges from 0 to 225 lb/acre for soils testing 'very high' to 'very low' by 'Mehlich-1'plus supplemental K₂O fertilizer applications in specific situations, respectively. However, based on a survey, is not uncommon for tomato growers to use as much as 450 to 650 lb/K₂O/acre.

Objective

The objectives of this study was to evaluate the effect of K rates on tomato petiole K sap, plant K biomass uptake, yield and fruit quality on spring tomatoes grown in seepage irrigation.

Materials and Methods

- Two fertilizer trials were conducted in the spring of 2010 (very low K) and 2011 (medium K) in a randomized complete block design with four replications.
- Eight fertilization rates were applied: 0, 60, 120, 180, 240, 360, 480, 720, and 960 lb/ K₂O/acre.
- Data collection consisted on petiole K sap, yield, plant biomass and K content, K soil and postharvest quality as internal white tissue (IWT).
- K petiole sap was analyzed by ANOVA and mean separation by Duncan's multiple range tests. The yield, plant biomass and Kuptake, and K soil was analyzed by four models: linear, quadratic models, linear-plateau and quadratic-plateau. Maximum yields were determined at the intersection of the quadratic and plateau.

60 lb/acre 480 lb/acre 240 lb/acre Figure 2. The effect of different K rates on tomato fruit quality as IWT in Palmetto, FL spring 2010.

960 lb/acre Figure 3. The effect of different K rates on plant biomass in Palmetto, FL spring 2010.

Potassium Requirements for Optimum Yield and Fruit Quality of Mature-Green Tomatoes in Florida Monica Ozores-Hampton¹, Crystal Snodgrass², and Kelly T. Morgan¹

	60	2,662.24	42.01	2,143.2	128.6
	120	2,942.14	73.00	2,256.0	142.7
	180	2,673.49	45.79	2,044.9	122.4
	240	3,246.56	80.25	2,013.1	125.2
	360	3,232.33	89.65	2,216.0	156.8
	480	3,699.96	132.55	2,232.9	155.7
	720	3,167.77	125.42	2,238.5	102.4
	960	3,026.81	118.48	2,226.6	96.8
	P. value	0.03/0.07	0.0001/0.0002	0.25	0.001
	Regression	Q/QP	Q/QP	ns	Q
	Optimum rate	477.1/405.2	616.9/599.5	-	310.47
² QP = Quadratic-plateau regression: LP = Linear-plateau regres					

Plant biomass and fruit					
nass	K-uptake				
,476.7	33.06				
,325.4	76.52				
,742.8	65.96				
,996.7	138.95				
,557.9	197.31				
,424.9	218.83				
,753.3	239.06				
,518.6	233.42				
.0001	0.0001				
LP	LP				
214 5	355.0				

805.45	170.58
98.14	215.69
18.39	168.18
259.70	205.41
48.31	246.44
32.84	288.27
06.27	227.83
253.38	215.27
0.03	0.001/0.007
Q	Q/QP
89.5	482.7/429.4

5,1

tomato yield production increased with added fertilizer K₂O rate to 380 Ib/acre (Table 1a; Figure 2, 3 and 4a). However, the study with medium soil test K indicated no response to added fertilizer K₂O rate (Table 1b; Figure 1b and 4b). These results would indicate that further K rate studies with seepage irrigation.

Acknowledgements

The authors would like to thank D.C. McClure at West Coast Tomato, Inc., Griffin Fertilizer, Inc. and Howard Fertilizer, Inc.

