Calibrating Energy Cane Biomass and Nitrogen Uptake with Vegetation Indices Derived from Canopy Reflectance at the Red, Red-Edge and Near Infrared Wavebands

Saoli Chanda¹, Marilyn Sebial Dalen¹, Suelen Cristina Mendonça Maia², Payton Dupree¹, Brandon White¹, Pilatluk Lunliu¹ and Brenda Tubana¹

(1) School of Plant, Environmental, and Soil Sciences, LSU AgCenter, Baton Rouge, LA, (2) Department of Crop Science, College of Agricultural Sciences, São Paulo State University – UNESP, Botucatu, Brazil

INTRODUCTION

> Remote sensing has emerged as one of the most useful technologies in modern agriculture for non-invasive monitoring of plant N status. > Remote sensing utilizes several spectral domains from the visible to short-wave infrared regions of the electromagnetic spectrum.

RESULTS AND HIGHLIGHTS

Jaz at four weeks after N application.

Table 1. Analysis of variance of the different agronomic parameters as affected by different nitrogen rates at five weeks after N application.

N Rate (kg ha ⁻¹)	Biomass Yield (Mt ha ⁻¹)		N Uptake (kg ha ⁻¹)		Chlorophyll Reading		Tiller Number (count m ⁻²)	
	Ho 02-113	US 72-114	Ho 02-113	US 72-114	Ho 02-113	US 72-114	Ho 02-113	US 72-114
0	7.87	5.08	68.5	50.2	32.4	31.1	96	78
56	9.35	8.23	95.7	81.5	38.2	35.5	92	94
110	8.40	7.15	99.2	69.5	39.8	36.8	93	87
224	8.27	7.76	113.4	97.9	41.4	38.8	84	86
P-value	0.9114	0.1731	<0.0001	0.2672	0.0049	0.0012	0.8368	0.7370
0.8	 GreenSeeker Ho 02-113 Jaz 			02-113	^{0.8} GreenSeeker US 72-114 Jaz			
0.6 -					0.6 -			
0.4 -	y = 0.0077x + 0.3146 R ² = 0.2976				y = 0.0071x + 0.2949 R ² = 0.1614			
0.2 -	y = 0.0084x + 0.1135 R ² = 0.35				0.2 - $y = -0.0002x + 0.1678$ R ² = 0.0002			
0.0					0.0			
Figure 1. The relationship between biomass and NDVI ₇₁₀ readings from GreenSeeker and								

> Near infrared relates with cell and plant geometrical structure while visible wavelength shows unique signatures of plant pigments. Red-edge has been reported as a good indicator of plant chlorophyll content.

OBJECTIVE

> Identify vegetation indices derived from canopy reflectance readings within the red, red-edge, and near infrared wavebands that can be used to characterize energy cane (*Saccharum* sp.) biomass and N uptake.

MATERIALS AND METHODS

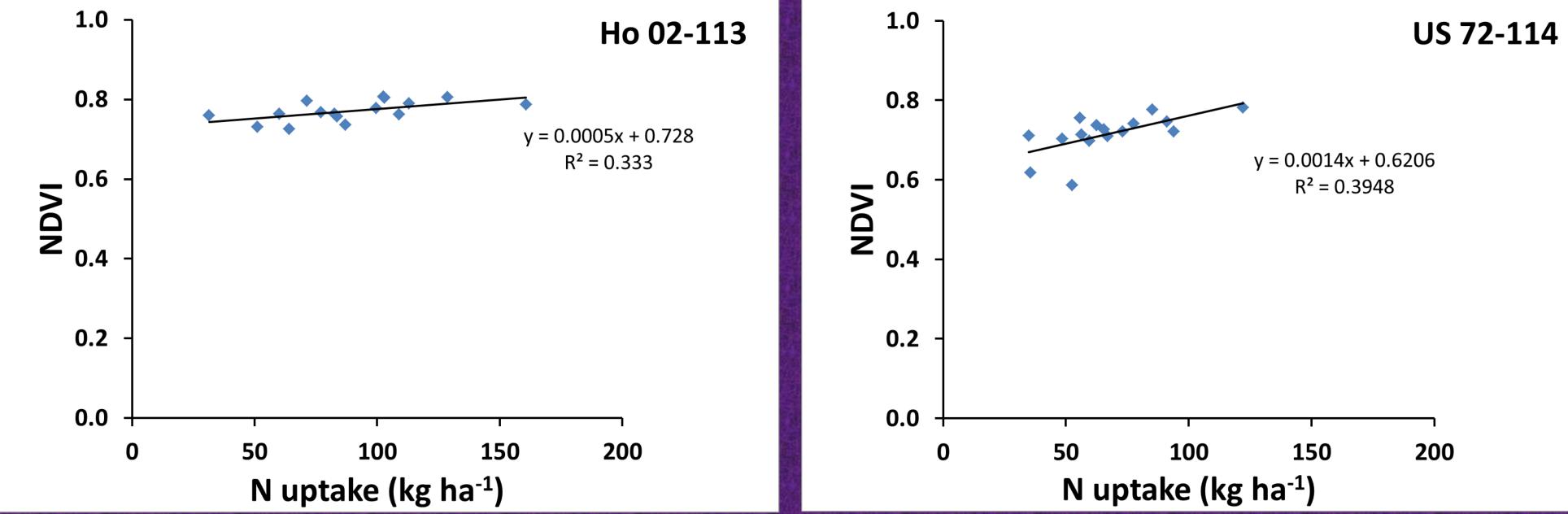
Research Site: LSU AgCenter Sugar Research Station, St. Gabriel, Louisiana.

Experimental design: 2 x 4 factorial treatment structure was superimposed on 9 m x three 1.8 m bed plots using split plot in randomized completely block design with four replications.

> Treatments:

- Energy cane varieties: Ho 02-113 and US 72-114.
- Nitrogen rates: 0, 56, 110, and 224 kg N ha⁻¹

> Data collection:


a.Canopy reflectance readings were collected using a Jaz[®] hyperspectral spectrometer (300 to 1100 nm) and 2- and 4-band handheld active sensors (GreenSeeker[®]) from a 1 m² area of each plot. NDVI was computed using the following formula:

 $NDVI = \frac{Ref_{NIR} - Ref_{RED}}{Ref_{NIR} + RefRED}$ b. Chlorophyll readings were collected using Minolta SPAD 502 from the middle row of each plot (30 readings then averaged).

b. Chlorophyll readings

Figure 2. The coefficient of determination (r²) between NDVI and N uptake at four weeks after N application.

- > A few vegetation indices have been identified that are potentially useful for nondestructive characterization of energy cane biomass and N uptake. These include the NDVI computed from NIR and red reflectance readings (Figure 1).
- > The effect of N rate was only observed at five weeks after N application and only on a few measured agronomic parameters of Ho 02-113 and US 72-114 (Table 1). However, the NDVI readings of Ho 02-113 began corresponding to changes with both biomass

c. Biomass clippings and tiller count were collected from a 1 m^2 area of each plot.

> Field data collection: initiated three weeks after N fertilization and done once a week for three consecutive weeks.

> Data analysis: The relationship among measured parameters were determined using regression analysis and ANOVA in SAS 9.3.

c. Biomass collection and tiller count

and N uptake at four weeks after N application but for US 72-114, the NDVI readings were associated only with N uptake (Figures 1 and 2).

> Our initial results suggest that there is a narrow window for collecting canopy reflectance readings for non-invasive characterization of N-related agronomic parameters.

Continuing research effort is focused on building the sensor database system and refinement of the relationships among energy cane N-related agronomic parameters and sensor based-vegetation indices.