

Influences of Urea-Nitrogen Stabilizers on Ammonia Volatilization and Nitrous Oxide Emissions From Two Contrasting Soils Rakesh Awale and Amitava Chatterjee

Department of Soil Science, North Dakota State University, Fargo, ND 58108

INTRODUCTION

- **Urea-treated soils are important source of** gaseous N (NH₃ and N₂O) losses to the atmosphere.
- **Urea-N stabilizers (urease and/or nitrification** inhibitors) and slow-release N-fertilizer have the potential to decrease soil emissions of NH₃ and N₂O, however their effects can vary with soil texture.

Pictures showing (a) amendment of treatment, (b) installation of H₃PO₄ trap, and sampling port (butyl rubber septum) on the lid, and (c) a complete experimental unit.

Physical and Chemical Properties of Soils used in the Study									
Soils	pН	EC (ds m ⁻¹)	Sand (g kg ⁻¹)	Silt (g kg ⁻¹)	Clay (g kg ⁻¹)	OM (%)	NO ₃ ⁻ -N (mg kg ⁻¹)	CEC (cmol kg ⁻¹	
Ulen	8.29	0.13	814	103	93	3.4	2.12	10.4	
Fargo	7.27	1.16	62	454	494	10.3	34.8	43.4	

RESULTS

To evaluate the effects of urea-N stabilizers and slow-release N-fertilizer on NH₃ volatilization and N_2O emissions from two contrasting soils, representative of large agricultural areas in ND and MN, where urea is widely used.

NH₃ Volatilization from N-fertilizers in Ulen Sandy Loam

METHODS

- **Two surface soils (0-15 cm) Ulen sandy loam** and Fargo silty clay -were collected, air dried, and ground to pass a 2 mm sieve.
- In 1-L mason jars, each soil (100 g air-dryequivalent) was amended with 36 mg N (except control, 0 N applied) of respective N sources: (1) Urea, (2) Urea with urease inhibitor (NBPT), (3) Urea with nitrification inhibitor (NP), (4) Urea with urease (NBPT) and nitrification inhibitor (DCD), and (5) Polymer coated urea (PCU).
- **De-ionized water was added to adjust soils at** 60% WHC.
- The jars were closed with airtight lids and the soils were incubated at 20°C for 126 days in the laboratory. A cup with 20 mL of $0.5 M H_3 PO_4$

(acid trap to capture NH₃) was hung above soil surface from the lid (Singurindy et al., 2006). Headspace air sample was collected from a sampling port (with a butyl rubber septum) using 30 mL syringe. Air samples were analyzed for N₂O concentrations using a DGA-42 Dani Master gas chromatograph fitted with ⁶³Nielectron capture detector (Parkin and Venterea, 2010).

- Following gas sampling, acid traps were collected and replaced with fresh traps. The traps were extracted with 2 M KCl, and NH₄⁺ concentrations were analyzed using an automated Timberline TL2800 ammonia analyzer.
- Soils were analyzed for inorganic N contents at the end of the incubation.
- The rates of NH₃ volatilization (and N₂O emissions) were calculated from the time elapsed headspace gas concentration and volume, and soil mass.
- Cumulative emissions of NH₃ (and N₂O) during the incubation was computed from the

1	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	* * * * * * * * * * * * • * * * • • • • • • • • • • • • • • • • • • •	* 11 17 Days of Incu	* * 21 28 42 ubation	$\begin{array}{c} \mathbf{S}_{\mathbf{N}} 1000 \\ \mathbf{N}_{\mathbf{N}} 0 \\ \mathbf{N}_{\mathbf{N}} 0 \\ \mathbf{N}_{\mathbf{N}} 0 \\ 0 \\ 0 \\ 0 \\ 2 \\ 4 \\ 6 \\ 0 \\ 0 \\ 2 \\ 4 \\ 6 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ $	* * * * * * * * * * * * * * * * * * *	* * * * * * 42 63 89 1 tion		
	Cumulative Emissions of Ammonia and Nitrous Oxide, and Emission					Residual Inorganic-N Contents in Two Soils			
	Factors	for Various	N-fertilizers	in Two Soils	Treatments	Ulen Sandy Loam	Fargo Silty Cla		
	Trootmonte	Cumulative NH_3 emission Cumulative N_2O emission			N ₂ O emission	mg kg ⁻¹			
	Πεαιπεπις	NH ₃	factor	N_2O	factor	Control	0.3 ± 0.0 c [†]	3.6 ± 1.2 b	
		mg kg ⁻¹	0/0	mg kg-1	9⁄0	Urea	17.6 ± 2.6 b	27.5 ± 5.8 a	
		<u>Ulen Sandy Loam</u>		Urea + NBPT	18.3 ± 3.6 b	36.5 ± 2.3 a			
	Control	0.7 ± 0.2 f [†]	-	0.1 ± 0.0 e	-	Urea + NP	15.4 ± 2.5 b	36.7 ± 4.5 a	
	Urea	16.5 ± 0.4 c	4.3 ± 0.1 c	27.3 ± 2.6 a	7.4 ± 0.7 ^a	Urea + NBPT + DCD	18.0 ± 2.4 b	35.8 ± 3.8 a	
	Urea + NBPT	11.4 ± 0.3 d	2.9 ± 0.1 d	24.0 ± 3.4 ab	6.5 ± 0.9 ^a	PCU	29.1 ± 2.4 a	34.5 ± 1.8 a	
Urea + NP		32.1 ± 0.9 a	8.6 ± 0.2 a	20.9 ± 2.4 bc	5.7 ± 0.6 ab	[†] Means (± standard error) followed by different letter	rs in the same column differ significantly (p < 0	0.05).	
	Urea + NBPT + DCD	19.7 ± 0.9 b	5.2 ± 0.3 b	15.4 ± 1.3 cd	4.2 ± 0.4 bc				

summation of NH₃ (and N₂O) emitted in each sampling period. % $EF_{(NH3 \text{ or } N2O)} = (C_f - C_c)/N$ -applied x 100 where, C_f and C_c are cumulative NH_3 (or N_2O) emissions from N-amended and control treatments, respectively (Jumadi et al., 2008).

Abbreviations: ND, North Dakota; MN, Minnesota; NBPT, N-(nbutyl) thiophosphoric tiramide; NP, Nitrapyrin; DCD, Dicyandiamide; WHC, water holding capacity; %EF, percent emission factor.

PCU 0.7 ± 0.2 e 13.5 ± 2.4 d $3.2 \pm 1.0^{\text{e}}$ 3.7 ± 0.7 c **Fargo Silty Clay** 0.5 ± 0.1 d 6.0 ± 0.8 b Control 1.2 ± 0.2 ab Urea 0.2 ± 0.0 ab 30.6 ± 2.8 a 6.8 ± 0.9 a Urea + NBPT 0.7 ± 0.1 cd 0.1 ± 0.0 b 5.2 ± 0.6 a 25.1 ± 2.0 a 22.2 ± 5.4 a 4.5 ± 1.3 a Urea + NP 1.8 ± 0.3 a 0.4 ± 0.1 a Urea + NBPT + DCD 1.1 ± 0.2 bc 0.1 ± 0.0 b 22.5 ± 2.9 a 4.5 ± 0.6 a PCU 1.1 ± 0.1 bc 0.2 ± 0.0 ab 22.4 ± 2.0 a 4.5 ± 0.7 a [†]Means (\pm standard error) within each soil type denoted by a different letter in the same column differ significantly (p < 0.05).

SUMMARY AND CONCLUSIONS

Fargo Silty Clay

89 126

- **Application of urease inhibitor (NBPT) can reduce NH₃ volatilization losses from** urea-applied soils.
- Slow-release N-fertilizer (PCU) has a potential to reducing both NH_3 and N_2O emissions, particularly in sandy loam soils.
- Nitrification inhibitors (NP and DCD) were effective in reducing N₂O emissions from urea application in sandy loam soils.
- **Efficiencies of urea-N stabilizers and slow-release N-fertilizers in mitigating** gaseous N-emissions vary with soil type.

REFERENCES

• Jumadi, O., Y. Hala, A. Muis, A. Ali, M. Palennari, K. Yagi, and K. Inubushi. 2008. Influence of chemical fertilizers and a nitrification inhibitor on greenhouse gas fluxes in a corn (Zea mays L.) field in Indonesia. Microbes Environ. 23:29-34. • Parkin, T.B., and R.T. Venterea. 2010. USDA-ARS GRACEnet project protocols. Chapter 3: chamber-based trace gas flux measurements. *In:* Follet, R.F. (Ed.). Sampling Protocols. USDA-ARS, Fort Collins, CO. pp 3-1 - 3-39. • Singurindy, O., B.K. Richards, M. Molodovskaya, and T.S. Steenhuis. 2006. Nitrous oxide and ammonia emissions from urine-treated soils: texture effect. Vadose J. 5:1236-1245.

