

Broadening of genetic diversity in spring canola (Brassica napus L.) by use of the C genome of Brassica oleracea var. alboglabra and B. oleracea var. botrytis.

Rameez Iftikhar (MSc. Student), Supervisor: Habibur Rahman¹

¹Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada

Materials and Methods (continued) Introduction Conclusion > Despite the complex inheritance pattern of glucosinolate Brassica napus L. (AACC genome, 2n = 38) is an important Development of Recombinant inbred lines contents, this study demonstrated the feasibility of oilseed crop in the world F_2 and BC_1 derived interspecific inbred lines were developed according developing double low canola quality *B. napus* lines from *B.* Canada is top canola producer in the world to scheme as shown below with evaluation for following agronomic and

generating over \$19 billion each year. Genetic diversity (GD) in breeding germplasm of spring canola *B. napus* needs to increase for continuous progress in this crop (Diers et al. 1996,

Fu and Gugel, 2010, Bennett et al. 2012).

Germplasm to broaden GD in

spring canola B. napus;

- Primary gene pool
- (Rutabaga, winter and semi-winter types B. napus)
- Secondary gene pool

(*B. rapa*, *B. oleracea*, *B. junceae* etc)

Brassica

Seed quality traits in each generation population;

- Days to flower
- Plant fertility
- Fatty acid composition
- Glucosinolate contents

Ploidy level

In F_6 and BC_1S_4 generation population.

Genotyping

 F_4 and BC_1S_3 families were genotyped by using polymorphic SSR markers.

B. napus × B. oleracea	
(A04-73NA) (<i>B.oleracea</i> var.	alboglabra
B. oleracea va	r. botrytis)
↓	
$\mathbf{F}_1 \qquad \times \qquad \mid$	B. napus (A04-73NA)
self-pollination	self-pollination
F ₂	BC1
self-pollination	self-pollination
↓ F ₃	BC_1S_1
self-pollination	self-pollination
\mathbf{F}_{4}	\downarrow BC ₁ S ₂
1	1
	1
Ļ	Ļ
\mathbf{F}_7	BC_1S_5
F ₂ -derived inbred lines	BC_1 - derived inbred lines

3. napus × B. oleraced

napus \times *B. oleracea* cross.

- \succ Study on plant fertility traits showed the need of repeated cycle of selection to overcome sterility during *B. napus* \times *B.* oleracea type interspecific crosses.
- \triangleright Ploidy results showed that *B. napus* inbred lines with 2n = 1

38 are achievable from *B. napus* × *B. oleracea* and (*B. napus*

 \times B. oleracea) \times B. napus cross.

 \succ From molecular results it can be concluded that genetic diversity from *B. oleracea* types var. *alboglabra* and var. *botrytis* can be introgressed successfully into spring canola B. napus.

Study Objectives

>To Investigate the feasibility of developing canola quality *B. napus* (2n = 38) inbred lines of spring growth habit from *B. napus* × *B.* oleracea and (B. napus \times B. oleracea) \times B. napus interspecific cross. \succ Estimate the allelic diversity introgressed from C genome of *B*. *oleracea* into *B. napus* by simple sequence repeat (SSR) markers.

Table: Summary of plant fertility traits in F_2 and BC_1 derived interspecific generation populations of B . napus $\times B$. pleracea crosses.											
			Silique length (mm)		Seeds per pod						
Generation ^x	Exp.cond	Obsy	Range	$\mathbf{Mean} \pm \mathbf{SD}$	Range	$Mean \pm SD$	Perct. plant fertility ^z				
F3	GH	296(191)	9.6-54.6	27.4 ± 7.75	0.2-23.0	3.8 ± 3.49	64%				
BC_1S_1	GH	505(211)	10.0-38.8	21.7 ± 5.98	0-7.0	0.7 ± 1.33	42%				
F4	GH	399(164)	11.8-59.0	30.5 ± 8.49	0-12.8	2.7 ± 2.78	41%				
BC_1S_2	GH	680(239)	12.5-60.0	31.2 ± 9.47	0-13.0	2.5 ± 2.55	35%				
Fs	Field	432(409)	12.7-65.3	40.8 ± 10.66	0-34.7	20.3 ± 7.71	95%				
BC_1S_3	Field	546(507)	117-607	36.4 ± 10.91	0-39-3	17.5 ± 8.15	93%				

Results

Genetically diverse canola quality B. napus recombinant inbred lines can be developed through reconstitution of C genome of B. napus with B. oleracea and such genetically distinct interspecific cross derived inbred lines may have potential to develop commercial canola quality spring type hybrid cultivars.

Future Perspective

Materials & Methods

Parental materials was comprised of one canola quality spring type *B. napus* (AACC, 2n = 38) double haploid line A04-73NA and two types of *B. oleracea* var. *alboglabra* and var. botrytis.

Crossing scheme

The following two interspecific crosses were made using B. napus as female and B. oleracea as male parent to develop interspecific F_1 hybrids.

- A04-73NA × *B. oleracea* var. *alboglabra*
- A04-73NA × *B. oleracea* var. *botrytis*
- F_1 plants were self-pollinated to produce F_2 seeds as well as

Distribution of partec value in F_c and BC₁S

Partec value

300 400 500 600 700

	Elocic acio	:id (%)		Glucosinolate		
eration ^z Exp.cond ^y Obs	Range	Mean ± SD	Obs	Range	Mean ± SD	% families"00" type
F3 OH 149	0.0 - 28.02	11.15 ± 7.60	98	7.3 - 60.8	34.13 ± 12.37	2.0%
F4 GH 126	0.0 - 20.22	4.99 ± 6.73	99	7.1 - 62.3	32.34 ± 11.96	6.0%
BC1S2 GH 190	0.05 - 29.68	5.49 ± 7.35	147	8.6 - 61.0	30.09 ± 11.59	8.2%
Fs Field 232	0.0 - 24.02	3.01 ± 6.13	128	11.0 - 65.7	31.81 ± 12.01	14.8%
BC1S3 Field 319	0.0 - 34.63	3.22 ± 6.09	180	8.1 - 57.2	26.07 ± 10.69	20.0%
F6 OH 163	0.02 - 17.56	0.68 ± 2.49	111	7.2 - 46.5	22.2 ± 10.05	30.6%
BC1S4 OH 185	0.0 - 6.62	0.29 ± 0.66	143	6.3 - 46.6	20.3 ± 8.97	30.1%
04-73NA 29	0.03-0.27	0.14 ± 0.27	21	8.40 - 20.03	11.75 ± 2.38	

/Emerimental condition, GH = men how

Acknowledgments

Funding for this research project was provided by Alberta Canola Producers Commission (ACPC) and Natural Sciences and Engineering Research Council (NSERC).

References

Bennett, R. A., G. Séguin-Swartz, and H. Rahman, 2012: Broadening genetic diversity in canola (Brassica napus L.) using the C-genome species B. oleracea. Crop Sci. 52: 2030-2039.

Diers, B. W., P. B. E. McVetty, and T. C. Osborn, 1996: Relationship between heterosis and genetic distance based on restriction fragment length polymorphism

backcrossed to the *B. napus* parent A04-73NA to develop

backcross (BC_1) seeds.

• (A04-73NA \times *B. oleracea* var. *alboglabra*) \times A04-73NA

(A04-73NA × *B. oleracea* var. *botrytis*) × A04-73NA

