

Space-planted condition abates the GxE interaction in maize inbred lines and hybrids

Fokion Papathanasiou¹, Constantinos Tzantarmas², Elissavet Ninou³, Christina Gaintatzi², Chrysanthi Pankou³, Fotis Gekas³, Ioannis Mylonas³, Anastasia Kargiotidou², Ekaterini Pechlivanidou², Ioannis Papadopoulos¹, Iosif Sistanis¹, Christos Dordas³ and Ioannis S. Tokatlidis²

¹Technological Education Institute of Western Macedonia, Florina, Greece

²Democritus University of Thrace, Orestiada, Greece,

³Aristotle University of Thessaloniki, Thessaloniki, Greece

Introduction

Strong yield by density interaction resulting in considerable variation in optimum population is a root cause of GxE interaction in maize genotypes. Ultra-low density to ensure absence of competition has been asserted as a unique presupposition to tackle the problem (Tokatlidis 2013).

Methods

Thirty-one inbred lines, twenty five of commercial interest provided by the 'American Genetics Inc.' as well as six experimental lines selected in the absence of competition and on the basis of the single-plant yield were tested during the 2012 growing season at ultra-low density (ULD) and typical dense stand (TDS) under both normal (NI) and water-stressed (DI) regimes. Thirty one hybrids, obtained from single-crosses among the above lines, were tested during the 2013 season. Field experiments were established in three locations in Northern Greece, the two common for both seasons, henceforth named Site1 (Thessaloniki), Site2 (Florina), and Site3 (Giannitsa for the lines, and Serres for the hybrids).

Results

The lines averaged 102 - 697 g/plant and 3,160 - 13,760 kg/ha when spaced and crowded, respectively. The respective values for the hybrids were 645-1,377 g/plant and 8,850 - 13,210 kg/ha.

 Table 1. The simple correlation coefficients among the six environments under the ULD for grain yield.

ULD Environment	Site3(DI)	Site3(NI)	Site2(DI)	Site2(NI)	Site1(DI)
Charles Charles	the states	Inbred li	ines	A. S. CARLO	144 14
Site1(NI)	0.86 ***	0.91 ***	0.86 ***	0.86 ***	0.94 ***
Site1(DI)	0.90 ***	0.92 ***	0.89 ***	0.91 ***	Sec. Sec.
Site2(NI)	0.93 ***	0.88 ***	0.95 ***	100 C	10 F. F. S. S.
Site2(DI)	0.88 ***	0.83 ***			
Site3(NI)	0.94 ***	19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -		* ·	
	12 m 1 12 m	Hybrid	ls		
Site1(NI)	0.88 ***	0.82 ***	0.73 ***	0.77 ***	0.85 ***
Site1(DI)	0.82 ***	0.78 ***	0.69 ***	0.70 ***	
Site2(NI)	0.86 ***	0.85 ***	0.92 ***	all as all	Sec. Sec.
Site2(DI)	0.62 ***	0.74 ***	1995 - Frank	50000000	15 5005
Site3(NI)	0.87 ***				

*, P<0.05; **, P<0.01; *** P<0.001

References

Tokatlidis I.S. (2013). Adapting maize crop to climate change: a review. Agronomy for Sustainable Development 33:63-79

For the inbred lines, at the ULD all the 15 among environments linear correlations were very high (r=0.83-0.95, P<0.001); at the TDS two r values were non-significant, eight indicated moderate correlation (0.36-0.56, P<0.05-0.01), and five met the P<0.001 level. For the hybrids, at the ULD all the 15 among environments linear correlations were significant at P<0.001(r=0.69-0.93), while at the TDS just two out of the 15 r values were significant (Tables 1 and 2).

Table 2. The simple correlation coefficients among the six environments under the TDS for grain yield.

TDS Environment	Site3(DI)	Site3(NI)	Site2(DI)	Site2(NI)	Site1(DI)
		Inbred li	ines		
Site1(NI)	0.45*	0.55**	0.36 *	0.59***	0.46**
Site1(DI)	0.40*	0.50**	0.26ns	0.34 ns	
Site2(NI)	0.56**	0.52**	0.65***	12 1 1 2 2	140 11
Site2(DI)	0.76***	0.65***	1. 18 - 18 - 18 - 18 - 18 - 18 - 18 - 18		and the second
Site3(NI)	0.88***	Sec. Sec.	the second second	and a specific	and and
The second second	Course Course	Hybrid	ls	1 To 1 To	Carl Trains
Site1(NI)	0.27ns	0.06 ns	0.23 ns	0.26 ns	0.53**
Site1(DI)	0.32 ns	0.15 ns	0.03 ns	0.09 ns	1.00
Site2(NI)	0.07 ns	0.25 ns	0.28 ns		
Site2(DI)	0.08 ns	0.09 ns	1.1.1.1	and the second	Sec. 14
Site3(NI)	0.69***		1.10		19. 19. 19

Conclusions

- The absence of competition rather than the typical density exhibited less GxE interaction.
- For the inbred lines, assuming the overall yield at the TDS as index of the crop yield potential, it was positively correlated with the acrossenvironment genotype performance at both densities. The ULD gave considerably higher r values, hence foresaw better the crop yield.
- In overall, the results were contrasting with the recommendation that there is no relationship between yield of isolated plants and crop yield, which presumably is valid when tested genotypes are heterogeneous, due to catalytic role of the yielding by competitive ability interference at the dense stand.

Work co-financed by the European Union (European Regional Development Fund-ERDF) and Greek national funds through the Operational Program "Competitiveness and Europeneurship" of the National Strategic Reference Framework (NSRF)-Research Funding Program: Synergasia2009. Action 1. Cooperative small- and mid-scale projects. program code 09 271N:22-604.