

Greenhouse Gas Fluxes as Affected by Urea Fertilizer, Nitrification Inhibitor, and Biomass Residue Application to Soil

B. N. Haegelin¹, J.O. Storlien², F.M. Hons², and Katie Rothlisberger-Lewis² ¹ Bioenvironmental Sciences, Department of Plant Pathology & Microbiology, Texas A&M University ²Department of Soil & Crop Sciences, Texas A&M University, College Station TX

Abstract

Nitrogen (N) fertilizer consumption has been increasing and a portion of the fertilizer applied can be lost via leaching, or gaseous emissions. Nitrification inhibitors (NI) are designed to inhibit nitrification, the microbial conversion of ammonium to nitrate, a highly mobile form of N most prone to loss. The objective of this study was to determine the impact of nitrapyrin on N_2O and other greenhouse gas (GHG) emissions as well as to determine what impact sorghum residue has on the efficiency of the nitrification inhibitor and nutrient cycling. A greenhouse study was designed in order to quantify fluxes of GHGs from soils amended with N fertilizer, nitrification inhibitor, and sorghum residue. Experimental treatments included every combination of the treatment scenarios with or without N fertilizer, Instinct II[®] nitrification inhibitor, and sorghum biomass residue, with 3 replications. Emissions of CO_2 , N_2O_2 , CH_4 , and NH_3 were measured for 8 weeks with a mobile Fourier Transform Infrared (FTIR) gas analyzer integrated with a LI-COR chamber. The addition of residue increased cumulative CO_2 emissions, most likely due to increased heterotrophic microbial activity. Nitrogen fertilizer increased cumulative N_2O and NH_3 emissions, with highest emissions for both gases occurring within one month after application. Nitrapyrin effectively lowered cumulative N₂O emissions but increased NH₃ loss about two and a half weeks after application.

Soil: Soil used was a Weswood silty clay loam. This soil tests high in extractable P, K, Mg and Ca, is calcareous, and had a pH of 8.2. Soil moisture was maintained at approximately 50% water-filled pore space throughout the study.

Methods

Bioenergy Sorghum Residue: Bioenergy sorghum (Sorghum bicolor L.) residue was derived from a high-biomass, photoperiod-sensitive variety, "4Ever Green". The crop was mechanically harvested on September 9, 2013 and oven-dried at 60°C prior to analysis and storage. Average C:N of biomass residue was ~65. Residue was applied at rates to mimic field application rates. Field treatments returned residue at a rate of 50% total biomass yield which was 13,720 kg ha⁻¹ for +N treatments and 8,282 kg ha⁻¹ for –N treatments, corresponding to 6.12 and 3.69 g residue kg⁻¹ soil.

Experimental Design: This study was a factorial design where PVC columns (33 cm x 10 cm, i.d.) were prepared by filling the bottom 15 cm of each column with unamended soil and the top 15 cm (top 6") with soil amended with every possible combination of the following three factors at two levels (3 replications of each): • Either zero (-N) or 0.2715 g dissolved-urea kg⁻¹ soil (+N)

• Either zero (-NI) or 1.094 mg nitrification inhibitor kg⁻¹ soil (+NI)

Either zero (-R) residue return or field-mimicked rate (+R) (see above description)

Introduction

- GHG emissions from agricultural soils are a major source of total anthropogenic emissions and potential drivers of global climate change.
- Further research is needed to help identify sustainable management practices that also lower GHG emissions.
- Nitrogen fertilizers are commonly used to increase crop yields, but can lead to increases in GHG emissions, especially N_2O . • Nitrification inhibitors can be used to inhibit nitrification and potentially reduce N_2O losses (Bremner, 1997). • Hypothesis: Treatments fertilized with urea fertilizer will exhibit greater N_2O emissions than those without, but nitrification inhibitor and sorghum residue will decrease total N_2O emissions.

Gas Measurement: A mobile FTIR spectrophotometer (Gasmet DX4030) paired with a 10-cm diameter survey chamber (Li-Cor 8100-102) was used to quantify gas fluxes from the soil surface of each column. Measurements were taken at the same time of day over a 5 week period.

Analysis: Flux rates were calculated by determining linear regressions of gas concentrations versus time. Cumulative emissions were calculated via linear integration over the 5 weeks. The effect of N fertilization, NI, and residue application and their interactions on cumulative CO_2 , CH_4 , N_2O , and NH_3 losses were tested using a mixed ANOVA in SAS (Version 9.2) with significance criteria of P<0.05. Fisher's LSD was utilized for means separation following a significant treatment effect.

Above: Li-Cor chamber atop

Above: Preparing nitrification

-N - N - N - NI - NI - R - R - R

Figure 1. Cumulative Greenhouse Gas Fluxes

Above: (a) CO_2 -C and (b) N_2O-N , (c) CH_4 -C and (d) NH_3-N . Values represent mean cumulative gas fluxes. S.E. (standard error) bars depict significance difference (p < 0.05) of primary treatments based on final cumulative value.

	CO_2	N_2O	CH_4	NH ₃	
Effect		p-value			
N-fert.	0.058	0.010	0.909	<.0001	
NI	0.010	0.0004	0.593	0.004	
Residue	<.0001	0.128	0.962	0.001	
N-fert.*NI	0.121	0.012	0.755	0.052	
N-fert.*Residue	0.115	0.997	0.046	<.0001	
NI*Residue	0.005	0.146	0.620	0.076	
N-Fert.*NI*Residue	0.533	0.559	0.604	0.006	

Table 1. ANOVA p-values for effects of N fertilizer (Nfert.), nitrification inhibitor (NI), and sorghum residue (Residue), and their interactions on cumulative CO_2 , N_2O , CH_4 , and NH_3 losses.

Conclusions

- Nitrapyrin was very effective at reducing N_2O emissions but led to increased CO_2 and NH_3 emissions.
- residue application increased CO_2 • Sorghum emissions, generally decreased NH₃ emissions and had no effect on N_2O emissions; potentially due to temporary immobilization of N.
- The combination of sorghum residue and NI

- Treatments with [+NI] had 19 times less cumulative N_2O emissions compared to
- Treatments with [+N] had approximately 100% more cumulative N_2O emissions than treatments
- Regardless of [N], soils with [+NI] had 1.7 times less cumulative N_2O than treatments without [-NI].

Methane (Fig. 1 c)

• Treatments with [+N, +R] had 36% higher cumulative CH_4 emissions than those without residue [+N, -R].

Ammonia (Fig. 1 d)

- Treatments with [+N] had 170% greater NH₃ emissions than those without [-N].
- Soils treated with [+NI] caused 77% more NH₃ emissions than treatments without [-NI].
- Regardless of [R], [+N, +NI] had 66% greater emissions of NH₃. Cumulative emissions were generally lower for treatments with [+R].
- Treatments with [+R] showed almost 100% less NH₃ emissions than treatments without [-R].
- Regardless of [NI], treatments with [+N,+R] exhibited at least 90% more NH₃ emissions.

inhibitor and urea-N fertilizer

solution in the laboratory

Determine the impact of NI on N₂O and other GHG emissions as well as the effect of sorghum residue on the efficacy of the NI.

Above: (Left) PVC column with residue (+R), and (Right) PVC column without residue (-R).

increased CO_2 emissions more than treatments with residue alone.

Acknowledgements

• We gratefully acknowledge the technical support of Ethan Diver, Chris Dermody, Payton Duvall-Freymuller, and Russ Garetson.

• Regardless of [R], soils treated with both [+N,+NI] had the most effect on NH₃ emissions and had approximately 80% more NH_3 emission.

References

• Bremner, J. M. 1997. Sources of nitrous oxide in

soils. Nutr. Cycle. Agroecosyts. 49:7-16.