A Comparison of Methods to Estimate N Mineralization in Soils Amended with Poultry Litter Nicolas Wyngaard and Miguel Cabrera (niwyngaa@uga.edu)

INTRODUCTION

The use of poultry litter (PL) as a fertilizer has the capacity to incr term. As a consequence, the nitrogen (N) mineralization potential The process of measuring Nmin is time consuming, as the aero completed. Therefore, short-term biological and chemical indexe validity of these indexes has never been confirmed in soils amend **Objectives:** 1) To quantify the change in Nmin in soils amended w 2) To evaluate the validity of the use of Nmin estimate

RESULTS

- Differences in total C and N between treatments with PL and inorganic fertilizer varied with soil (Table 1)
- The greater the clay content, the larger the difference between inorganic and PL treatments in total C (Δ C=0.0147 x %clay - 0.1549, R²=0.84) and in total N (Δ N=0.0018 x %clay - 0.0092, R²=0.96; Table 1).
- The C:N ratio tended to be smaller in PL treatments, suggesting an increase in the N mineralization potential.
- Three soils amended with PL have an increased N mineralization potential when compared to the same soils that received inorganic fertilizers (Fig. 1).
- The difference was 18, 62 and 115 mg N kg⁻¹ for Delaware 2, lowa and Georgia respectively, while no differences were observed in Delaware 1.
- The increase in N mineralization was associated with the accumulation of total N caused by PL application.

Table 1. Carbon and nitrogen concentration in four different soils
 after more than 10 years of inorganic or poultry litter fertilization

Soil	Treatment	C (g 100g ⁻¹)	N (g 100g ⁻¹)	C:N
Delaware 1	Inorg	1.24 d	0.076 f	16.3
	PL	1.17 d	0.084 f	14.0
Delaware 2	Inorg	1.16 d	0.110 e	10.5
	PL	1.34 d	0.132 d	10.1
lowa	Inorg	2.30 c	0.198 c	11.6
	PL	2.52 b	0.236 b	10.7
Georgia	Inorg	2.64 b	0.248 b	10.6
	PL	3.09 a	0.311 a	9.9

The increase in C and N content in soil generated by the long-term (>10 years) application of PL was positively associated with clay content. As a result, a soil with a small % clay (Delaware 1) did not show differences in Nmin measured by long-term aerobic incubation, while soils with more than 30% clay showed differences of up to 115 mg N kg⁻¹soil (85% more in PL treatment compared to inorganic fertilization). Regarding the Nmin estimation methods, some of them tended to underestimate or overestimate Nmin in PL treatments, while others did not have a high regression coefficient with No. Nan is recommended, as it showed the best correlation with No and was not affect

Crop & Soil Sciences – University of Georgia – Athens, GA - USA

	MATERIALS AN
rease the organic fraction of the soil in the long- al (Nmin) of the soil can potentially be increased. robic incubation of soil takes six months to be tes have been developed to estimate Nmin. The ded with PL with PL versus amended with inorganic fertilizers ors in these soils.	 Soils from a Two treatment Soil sample Nitrate in le Nmin estimation

Figure 1. Cumulative N mineralized in a long-term aerobic incubation of four soils amended >10 years with PL or inorganic fertilizer.

า	NaOH and ISNT extracted more N than the rest of the methods due to the more
	powerful nature of the used extractant, which hydrolyzes organic N compounds
	(Table 2).

- Hot KCl and ISNT presented different relationship with No depending on the fertilization treatment. Similar values of extracted N with either method were related to different No values.
- Using the relationship developed for soils receiving inorganic fertilizer would underestimate the mineralization potential of soils receiving PL
- In soil with greater clay content, where the effect of PL over C and N content was more evident, the inefficiency of the estimation methods was larger.
- From all the evaluated methods, Nan showed the best correlation with No, due to the shared biological nature of both methods, and was not affected by the fertilization treatments.

CONCLUSIONS

ND METHODS

3 states: - Delaware 1 (Ultisol, Woodstown series, pH: 6.1, 11.8% clay) - Delaware 2 (Ultisol, Mattapex series, pH: 6.0, 14.5% clay), (Mollisol, pH: 5.5, 29.2% clay) - Iowa

(Ultisol, Cecil series, pH: 5.46, 39.9% clay) - Georgia

ments in each soil: - >10 years of inorganic fertilization and >10 years of PL application les mixed with sand and incubated at field capacity for 98 days with bi-weekly leaching (0.01M CaCl₂) leachate measured by ion chromatography (No).

mators: anaerobic incubation for 7 days (Nan), Illinois soil test analysis (ISNT) extraction with hotl KCl, with NaOH or phosphate-borate (PB) and quantification of N in the soil particulate fraction (N-PF).

> Hot Treatmen Soil N-PF KCI Delaware 1 0.009 1.7 Inorg 0.011 1.9 PL Delaware 2 0.008 1.8 Inorg 0.013 PL 2.0 lowa 0.010 2.9 Inorg PL 0.038 2.9 Georgia 0.026 5.7 Inorg 0.051 6.1 PL

Table 2. Methods to estimate N mineralization (Nmin estimators)

y = 0.69x - 6.72y = 53.2x - 31.1 $R^2 = 0.93$ $R^2 = 0.93$ y = 0.31x + 28.8y= 21.7x + 18.3 $R^2 = 0.94$ $R^2 = 0.92$ 300 100 200 Hot KCI (mg kg⁻¹) ISNT (mg kg⁻¹)

ot affected by the fertilization treatments.
--

Nan	NaOH	PB	ISNT			
(mg N kg-1)						
41.0	88.3	16.1	33.3			
34.5	87.2	14.4	67.7			
60.6	121.8	19.5	111.8			
70.1	144.7	23.5	129.3			
73.0	223.5	61.9	228.7			
107.5	247.8	50.3	233.0			
126.6	352.3	58.9	364.8			
172.2	301.5	57.3	390.8			
	1					

