Tifton 85 bermudagrass yield and N use-efficiency as affected by N sources and application levels

Bernardo M. M. N. Borges^{*(1)}, Fernanda R. Peixoto⁽¹⁾, Saulo S. Cardoso⁽¹⁾, Ederlon F. V. Moline⁽¹⁾, Maria L. A. Silveira⁽²⁾, Takashi Muraoka⁽³⁾ and Edson L. M. Coutinho⁽¹⁾

> ⁽¹⁾Department of Soil Science, São Paulo State University Jaboticabal – SP – Brazil ⁽²⁾Range Cattle Research and Education Center, University of Florida Ona – FL – USA ⁽³⁾Center for Nuclear Energy in Agriculture, University of São Paulo Piracicaba – SP – Brazil *Presenting author – bernardonog@hotmail.com

Introduction

Nitrogen (N) fertilizer source and application level can have major impacts on crop performance and N utilization. The objective of this study was to evaluate the impacts of two N sources [urea and ammonium nitrate (AN)] on Tifton 85 (*Cynodon spp.*) dry matter (DM) yield and N use-efficiency in hay production systems.

Material and Methods

The experiment was conducted in São Paulo State, Brazil and treatments consisted of either urea of AN surface applied at 0, 60, 120, 180, and 240 kg N ha⁻¹ after each harvest. Forage was harvested at 30-day intervals (December to March) for two years. Response variables included DM forage yield, N use-efficiency, soil- and rootrhizome- (0-40 cm) and litter-N concentrations, photosynthetically active radiation (PAR), and leaf area index (LAI).

Results and Discussion

Fig. 1. Bermudagrass cumulative DM yield as affected by N application levels. Data are means of 8 harvests and 2 years (n= 16).

- Results indicated that **both fertilizer sources increased annual DM yield** at N levels up to 180 kg N ha⁻¹ (FIG. 1). There was a trend for AN to produce slightly greater yields than Urea (26.3 Mg ha⁻¹ for AN vs 25.2 Mg ha⁻¹ for urea). The interaction between "N Source x application level" was not significant (P > 0.05).
- **Ammonium nitrate** resulted in **greater DM yield** (2.2 Mg ha⁻¹ for AN vs. 1.6 Mg ha⁻¹ for urea) and **PAR** (AN - 65.6%; Urea - 55.1%) during the dry month (February of 2014). Treatments receiving urea showed smaller LAI (2.0) than AN (2.9) when rainfall was limited.
- No effect of N source on DM yield was observed when rainfall was adequate. Despite the lack of response on cumulative annual DM yield, AN resulted in greater N use-efficiency (average of 36%) than urea (average of 20%) (*P* < 0.001) (FIG. 2).
- Results demonstrated that **N** recovery by the plant-litter-root-soil system was greater when utilized AN, particularly when rainfall was

Fig. 2. Bermudagrass N use-efficiency as affected by N sources (P < 0.001). Data are means of 4 levels and 4 harvests (n= 16).

scarce resulting in higher DM yield and N use–efficiency (FIG. 3).

