Phosphorus Fertilizer Management for Sugarbeets in the Bighorn Basin of Wyoming

Nana Yaw Kusi¹, Abdel Mesbah^{1,*}, Bart Stevens², Andrew Kniss¹, Jay Norton³, and Axel Garcia y Garcia^{1,**}

¹Department of Plant Sciences, University of Wyoming, Laramie, WY; ²United States Department of Ecosystem Science and Management, University of Wyoming, Laramie, WY

*Currently at New Mexico State University Agricultural Science Center, Clovis, NM; **Currently at Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, MN

Introduction

Sugarbeet is a crop with high input use, fertilizer being one of the highest.

Profitable sugarbeet production depends on high root yield, high sucrose content, and high sugar yield. * Root elongation has a positive correlation to sugar yields in sugarbeets (Stevanato and Saccomani, 2004). Phosphorus (P) is known to increase root growth in crops as well as increase sugar and starch production ✤ P is best applied to soils through banding (Sims, 2010).

Figure 1: The reaction of P in acidic and alkaline soils

In acidic soils:

In basic soils:

(Wyoming soils)

It has been reported that banding P fertilizer results in more efficient uptake than broadcasting (Anderson and Peterson, 1978). When banding P fertilizers, it is often recommended that the P application rate should be reduced by 30 to 50 % (Sims, 2010). A major factor limiting P availability in Wyoming soils is

Ca, which binds P, making it unavailable to plants. ✤ P enhancers are available that when added to fertilizers. are advertised to increase their use efficiency by inhibiting the soil reactions that tie P up.

Figure 3: Root yield and sugar yield response to fertilizer products in the 2012 growing season. Within the same color bar, means with the same letters are not significantly different at P<0.05.

Figure 4: Root yield and sugar yield response to fertilizer products in the 2013 growing season. Within the same color bar, means with the same letters are not significantly different at P<0.05.

Objectives

- Evaluate the effect of P application method (banding vs. broadcasting) and an availability enhancing product on sugarbeet response to P application rate.
- Evaluate sugarbeet seedling emergence response to a low salt liquid popup starter fertilizer.

Materials and methods

- Location: University of Wyoming Research and Extension Center Powell, Wyoming.
- The experimental design was a randomized complete block design (RCBD) split plot with four replications.
- ✤ Main plot (105 m × 3.5 m) was fertilizer product and sub plot (15 m × 3.5 m) was fertilizer rates. Fertilizer products were liquid ammonium polyphosphate (APP) and dry monoammonium phosphate (MAP) with/without a Penhancer (Avail® - SFP, Belton, MS), and a popup starter fertilizer; Helena Nucleus O - Phos® (8-24-0). The five fertilizer products include APP + Avail® + popup; APP + Avail®; APP; MAP + Avail®; MAP.
- MAP (11-52-0) was broadcast on tilled plots at rates of 0, 34, 67, 135, 202, 269, and 336 kg ha⁻¹.
- APP (11-37-0) was banded at a depth of 7 cm directly below, and 7 cm beside the seed row at the same rates prior to planting.
- For all treatments, amount of N applied with the P was deducted from sole N application so all plots received same N amount in a season.
- ✤ The starter fertilizer was applied at 14.42 kg ha⁻¹ (in-furrow) at planting to one set of the banded P applications.
- Sugarbeet variety "Syngenta HM 9120" was planted in April and harvested in October for root yields and

Table 3: Root andfertilizer rates in	d sugar yields the 2012 grow	response to P wing season	Table 4: Root and rates in the 2013 g	sugar yields res growing season
P rates	Root yield	Sugar yield	P rates	Root yield
$(\text{Kg P}_2\text{O}_5 \text{ ha}^{-1})$	(t ha-1)	(t ha-1)	(Kg P ₂ O ₅ ha ⁻¹)	(t ha⁻¹)
0	83.84 a	14.06 a	0	58.15 a
34	86.53 a	14.46 a	34	58.35 a
67	86.08 a	14.60 a	67	58.71 a
135	85.86 a	14.50 a	135	60.01 a
202	85.86 a	14.44 a	202	61.15 a
269	85.86 a	14.41 a	269	60.37 a
336	88.32 a	14.85 a	336	62.07 a

*Means with the same letters within a column are not significantly different at P<0.05.

*Means with the same letters within a column are not significantly different at P<0.05.

yields response to P fertilizer

Sugar yield

(t ha⁻¹)

7.08 b

7.08 b

7.15 ab

7.36 ab

7.44 ab

7.44 ab

7.69 a

Table 5: Sugarbeet seedling emergence (standcount), root yield, and sugar yield response to popup liquid starter
fertilizer in 2012 and 2013

	2012				2013	
Fertilizer product Standcoun	Plants/hect	Root yield	Sugar yield	Standcount	Plants/hectare Root yield	Sugar yield
Plants/3m	are	(t ha-1)	(t ha-1)	Plants/3m	(t ha-1)	(t ha-1)

quality analysis.

APP + Avail	15.1 a	90,294 a	86.31 a	14.53 a	7 b	41,176 b	59.8 b	7.36 b
APP + Avail + Popup	14.8 a	88,394 a	86.31 a	14.47 a	12 a	70,588 a	75.17 a	9.24 a

Figure 2: The sugarbeet sampling process, from field to lab

Table 1: Effect of P source/placement and rates on the P and Zn concentrations in the sugarbeet plants in 2012 . Means with the same letters are not significantly different at P<0.05

Table 2: Effect of P source/placement and rates on the P and Zn concentrations in the sugarbeet plants in 2013. Means with the same letters are not significantly different at P<0.05

Fertilizer product	Top P (%)	Root P (%)	Top Zn (mg kg⁻¹)	Root Zn (mg kg ⁻¹)	Fertilizer product	Top P (%)	Root P (%)	Top Zn (mg kg ⁻¹)	Root (mg k
APP (Banded)	0.309 b	0.257 ab	23.94 a	19.0 a	APP (Banded)	0.404 a	0.331 a	56.88 a	26.08
APP + Avail	0.319 a	0.260 a	24.91 a	18.47 a	APP + Avail	0.394 a	0.332 a	57.04 a	25.00
MAP (Broadcast)	0.301 b	0.243 c	24.50 a	18.9 a	MAP (Broadcast)	0.404 a	0.340 a	56.81 a	25.96
MAP + Avail	0.305 b	0.246 bc	25.17 a	18.5 a	MAP + Avail	0.391 a	0.334 a	56.71 a	24.99
APP + Avail + popup	0.303 b	0.248 b	24.90 a	18.47 a	APP + Avail + pop	0.389 a	0.319 b	59.15 a	25.26

Fertilizer rates (kg P ₂ O ₅ /ha)					Fertilizer rates (kg P ₂ O ₅ /ha)				
0	0.296 d	0.238 de	27.67 a	19.18 a	0	0.380 b	0.308 c	59.03 a	26.11 ab
34	0.289 d	0.237 e	26.74 ab	18.70 ab	34	0.382 b	0.320 bc	56.84 ab	25.74 ab
67	0.297 d	0.243 de	25.44 bc	19.03 ab	67	0.379 b	0.319 bc	58.41 a	25.12 b
135	0.299 cd	0.249 bc	24.94 c	19.19 a	135	0.385 b	0.331 ab	57.21 ab	25.35 ab
202	0.313 bc	0.254 ab	23.33 d	18.13 b	202	0.403 a	0.339 ab	56.34 ab	27.05 a
269	0.322 ab	0.260 ab	22.72 d	18.22 ab	269	0.417 a	0.351 a	57.11 ab	24.69 b
336	0.331 a	0.265 a	23.21 d	18.09 b	336	0.420 a	0.345 a	55.21 b	25.09 b

Results summary ... continuation

- ✤Root yields among rates in 2013 were between 58 and 62 t ha⁻¹ (Table 4). Sugar yields among rates were between 7.08 and 7.69 t ha⁻¹ (Table 4). There were no significant differences among root yields but there were significant differences among sugar yields.
- The popup starter fertilizer and the non-popup treatment equally produced root yields of 86 t ha⁻¹ and sugar yields of 14 t ha⁻¹ in 2012 (Table 5). In 2013, the popup treatment produced a root yield of 75.17 t ha⁻¹ and sugar yield of 9.24 t ha⁻¹, whereas the non-popup treatment had root yield of 59.8 t ha⁻¹ and sugar yield of 7.36 t ha⁻¹ (Table 5).

Sugarbeet standcount in 2012 was 88,394 plants/ha for the popup treatment (Table 5) and 90,294 plants/ha for the non-popup treatment. In 2013, the standcount was 70,588 plants/ha in the popup treatment and 41,176 plants/ha in the non-popup.

Conclusion

A Higher P₂O₅ rates corresponded to slightly higher root and sugar yields. The P enhancer was seen to have minimal to no effect on P availability based on the early season sampling analysis.

Applying popup starter fertilizer may increase sugarbeet seedling emergence and yield.

Banding P fertilizers increases early season plant weight in some cases.

Results summary

- ✤Initial soil test results of P (10 mg kg⁻¹ in 2012[,] and 14 mg kg⁻¹ in 2013) suggested that there should be a good probability (50 - 60 %) of a yield response to added P fertilizer.
- There were no significant differences among root yields by fertilizer products, which ranged between 86 and 87 t ha⁻¹ in 2012 (Fig. 3), and 59 and 60 t ha⁻¹ in 2013 (Fig. 4).

 \bullet Sugar yields for fertilizer products was between 14.14 and 14.80 t ha⁻¹ in 2012, and 7.33 and 7.38 t ha⁻¹ in 2013. ✤Root yield among rates in 2012 were between 83 and 88 t ha⁻¹ (Table 3), whereas sugar yields were between 14.06 and 14.85 t ha⁻¹ (Table 3).

References

- Anderson, F., and G. Peterson. 1978. Optimum starter fertilizer placement for sugarbeet seedlings as determined by uptake of radioactive 32P isotope. J. Assoc. Sugarbeet Technol. 20(1): 19–24
- Johnston, A.E., P.W. Lane, G.E.G. Mattingly, P.R. Poulton, and M.V. Hewitt. 1986. Effects of soil and fertilizer P on yields of potatoes, sugar beet, barley, and winter wheat on a sandy clay loam soil at Saxmundham, Suffolk. J. Agric. Sci. 106:155–167
- Sims, A.L. 2010b. Sugarbeet Response to Broadcast and Starter Phosphorus Applications in the Red River Valley of Minnesota. Agron. J. 102(5) 1369–1378
- Stevanato, P., and M. Saccomani. 2004. Nutrient uptake traits related to sugarbeet yield. J. Sugar Beet Tech. 41(September): 89–99

Contact: <u>nkusi@uwyo.edu</u>

Scan for PDF version of poster

Acknowledgement: Western Sugar Coop., Justine Christman, Andi Pierson, and the summer crew of the University of Wyoming Research and Extension Center, Powell, Wyoming.