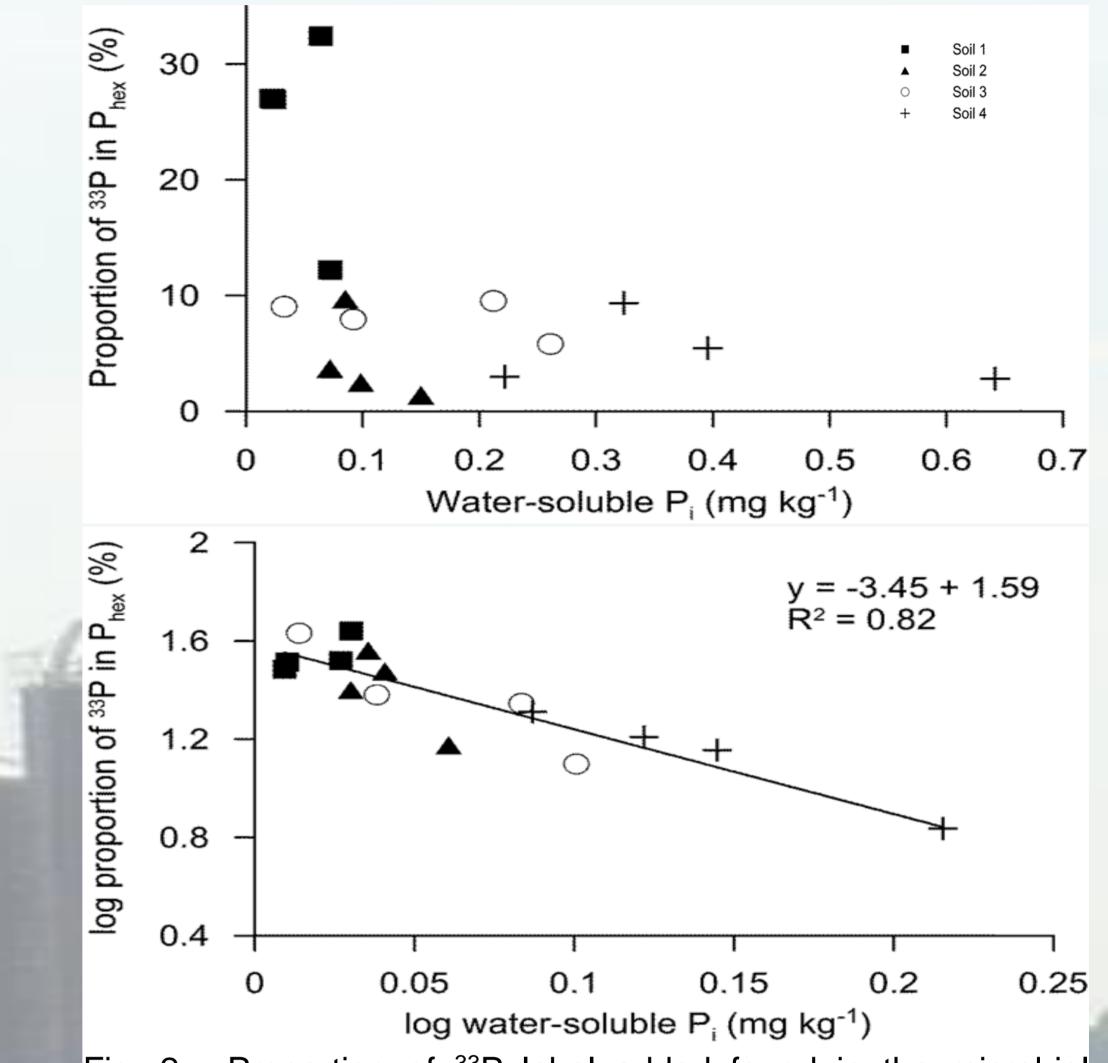


Gross P Mineralization and Microbial P Uptake in Forage Soils Along a Gradient of Available Inorganic P

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

KD Schneider+₁, A. Oberson₂, RP Voroney₁, DH Lynch₃, E. Frossard₂, EK Bünemann₂.


¹School of Environmental Sciences, University of Guelph, Guelph, ON, Canada; ²Group of Plant Nutrition, ETH Zurich, Lindau, Switzerland; 3 Department of Plant and Animal Sciences, Dalhousie University, Truro, NS, Canada

Introduction

Soil phosphorus availability is generally assumed to be governed by physico-chemical processes, but biological processes including organic P (P_0) mineralization can make important contributions to plant-available P (Bünemann et al., 2012). Mineralized Po may be especially important in soils where solution and labile P_i are low.

Isotopic dilution techniques have been developed to measure P_{o} mineralization under steady state conditions (Oehl et al., 2001_{a:} 2001_b). This is done by pairing a short-term Isotopic Exchange Kinetics (IEK) batch experiment, with a longer incubation experiment to separate the physicochemical and biological processes that govern the amount of isotopically exchangeable P_i in a soil system.

Tab. 1: Soil properties of the sampled fields.								
Soil Description (Field #)	Location (County)	Management Type	Soil Fertility Amendments	Total C (g C kg ⁻¹)	рН	Olsen STP (mg kg ⁻¹)	P _{H2O} (mg kg ⁻	
1	Perth	organic	manure	22.6 ^a	7.4 ^a	2.8 ^a	0.03 ^a	
2	Bruce	organic	manure	25.2 ^a	7.2 ^a	5.5 ^{ab}	0.07 ^a	
3	Perth	conventional	manure and fertilizer	23.6 ^a	7.3 ^a	6.8 ^b	0.10 ^a	
4	Bruce	conventional	manure and fertilizer	25.9 ^a	7.5 ^a	11.2 ^c	0.24 ^b	
1.					6			

Research Objective

ALL ALL THERE

To assess gross Po mineralization and microbial P uptake in four calcareous forage fields soils along a gradient of Olsen soil test P (STP) concentrations.

Methods

Soils from two organic and two conventional forage fields in Ontario, Canada, providing a gradient of STP concentrations were selected (Tab. 1) (n = 4 soil samples per field x 4 = 16)..

Fig. 1: Labelling and weighing out soil for the incubation experiment.

Results

Gross P_o mineralization accounted for a mean of 35% of isotopically exchangeable P across all four field soils (Tab. 2)

After 8 days, > 20% of the ³³P label was found in the microbial biomass P pool in 11/16 soils.

Microbial ³³P uptake was most rapid for soils with the lowest available P_i (Fig. 2).

As microbial P concentrations were constant, the data suggests accelerated P cycling (turnover) at the solution P lowest concentrations $< 0.1 \text{ mg P kg}^{-1}$.

Fig. 2. Proportion of ³³P label added found in the microbial bioimass P pool (P_{hex}) one (top) and eight (bottom) days after soil labelling.

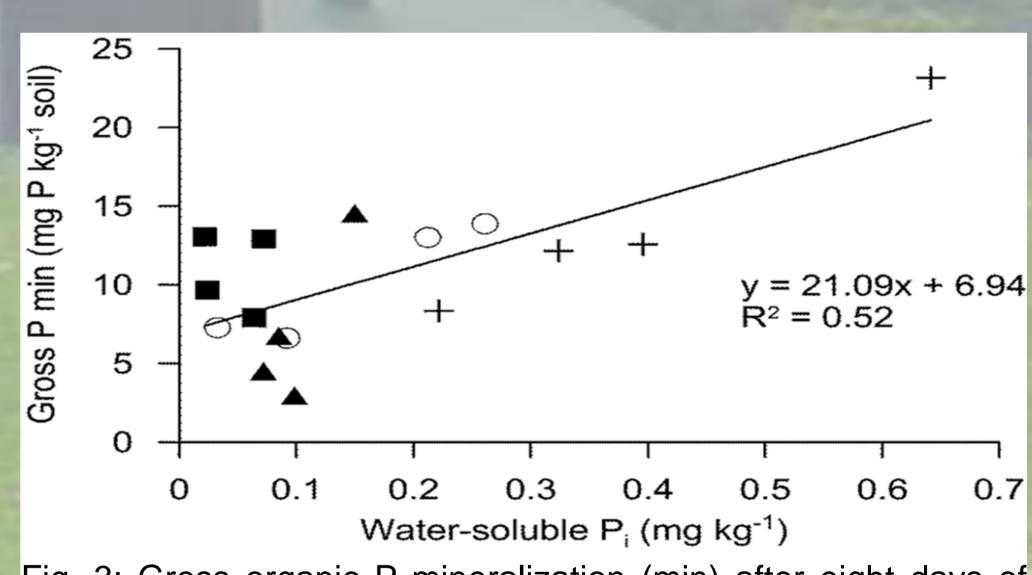


Fig. 3: Gross organic P mineralization (min) after eight days of soil labelling vs. soil water soluble P concentration.

Two main experimental components: 1) Isotopic Exchange Kinetics (IEK) experiment: Measured ³¹P and ³³P in solution at 1, 4, 10, 40, 60 and 80 minutes after ³³P addition. Parameters of isotopic exchange were determined and used to extrapolate *E*-values ($E_{\text{extrapolated}}$).

2) 7-day Incubation experiment: Measured ³¹P and ³³P in soil solution and microbial biomass, determined *E*-values due to both physico-chemical and biological processes (E_{measured})

E-value – amount of isotopically exchangeable P in a system in a given time period ($E_t = P_{H2O}$ / r_t/R , where R is amount of radioactivity added initially and r_t is the amount remaining at time t.

Gross P_o mineralisation was positively related to water soluble P_i concentrations (Fig. 3); however, this relationship deserves further study, as 3/16 soil samples with low solution P_i concentrations may have been underestimated due to very rapid microbial P uptake.

Tab. 2. Mean extrapolated (E_{ext}) and measured (E_{meas}) isotopically exchangeable P (E) values determined for the four field soils. Gross organic P (P_0) mineralization (min) is calculated by difference.

Soil	E _{ext} (mg kg⁻¹)	E _{meas} (mg kg⁻¹)	Gross P _o min. (mg kg⁻¹)
1	12.8 ^a	23.7 ^a	10.9 ^a
2	17.5 ^a	24.7 ^a	7.2 ^a
3	19.8 ^{ab}	30.4 ^a	10.2 ^a
4	28.9 ^b	42.6 ^b	14.1 ^a
Average	19.8	30.3	10.5

References

Bünemann et al. (2012). Soil Biol Biochem. 51: 84-95. Oehl et al. (2001_a). Soil Sci Soc Am J. 65: 780-787. Oehl et al. (2001_b). Biol Fert Soils 34:31-41.

Conclusions

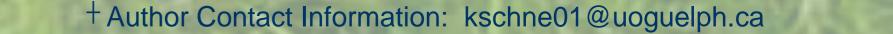
Gross P_o mineralization accounts for a significant of isotopicallyamount exchangeable P in forage soils.

Rapid uptake of ³³P into microbial biomass P pool indicates important P cycling occurs under steady-state conditions. The data suggest microbial P turnover is accelerated under low conditions of low solution P_i concentrations.

Methodological challenges including the use of high P-fixing soils with low water soluble P_i concentrations need to be further addressed when using these methods.

Acknowledgements

CRSNG



The following agencies are acknowledged for financial support: Natural Sciences and Engineering Research Council, Ontario Ministry of Agriculture Food and Rural affairs, and the Canada Research Chairs program.

