FRESNGSTATE

Discovery. Diversity. Distinction.

SUMMARY:

 \succ Tropospheric ozone (O₃) is a stressor of natural and managed vegetation. Climate change is altering hydrological systems. O_3 impact on nocturnal stomatal conductance (gs) has been suggested to increase transpiration and alter hydrology.

 \succ Elevated O₃ and water deficit are more deleterious to some crops than to weeds. The combined effects on crops and weeds are not known. Night-time conductance is an unexplored competitive factor. $\geq g_s$ of Pima cotton (G. barbadense) and common waterhemp (A.rudis) was determined by porometry in O_3 exposure chambers (4, 59 and 114 ppb, 12 hr mean) with irrigation [Well Watered (WW) and Water Deficit(WD)] as sub-effect. We hypothesize that O_3 increases nocturnal g_s and transpiration, as suggested in other species. \succ We found that increase in O₃ concentration and decrease in irrigation level both reduced day-time stomatal conductance (P<0.05) in cotton but not in common waterhemp. In contrast, increased O_3 levels increased night-time (2 AM) stomatal conductance in cotton but not in common waterhemp.

 \succ Simulations showed the net effect of O₃ in cotton was decreased transpiration, disproving the hypothesis. However, in common waterhemp, there was no effect of ozone and irrigation level in net transpiration.

 \succ Although nocturnal regulation of water loss was disrupted in cotton, the magnitude of night-time conductance was almost four-fold lower in cotton than in common waterhemp.

 \succ We conclude that reduced stomatal gas exchange (transpiration and photosynthesis) and reduced biomass productivity may shift cropweed competition in favor of common waterhemp under elevated O_3 . Nocturnal stomatal effects are not dominant in this system.

OBJECTIVE: The objective of this study was to evaluate the effects of O₃ and moisture on stomatal conductance and growth of a weed (common waterhemp) and an agronomic crop (cotton).

METHODOLOGY: A greenhouse experiment was conducted at the University of California, Kearney Agricultural Research and Extension Center, Parlier CA. Common waterhemp and Pima cotton were germinated and grown in a greenhouse.

At the 5-7 leaf stage (waterhemp) and first true leaf stage (cotton), seedlings were transferred to O₃ exposure chambers (Fig.1). The experimental design was a split-plot with three replications and the experiment was conducted twice. The main- and sub- effects were O₃ exposure (4, 59, and 114 ppb; 12-hour mean) and irrigation level [(WW) and (WD], respectively.

Day-time stomatal conductance was measured on 9 days and nighttime (2 AM) stomatal conductance on 7 nights, with a AP₄ leaf porometer, (Fig. 1).

Differential Responses of Crop and Weed to Ozone and Moisture Stress: **A Potential Perturbation of Crop-Weed Competition.**

Rama Paudel¹, David A. Grantz², Nancy Grulke³, Hai-Bang Vu², and Anil Shrestha¹ ¹Dept. Of Plant Science, California State University, Fresno, CA ²Dept. of Botany and Plant Science, University of California, Riverside, CA ³USDA Forest Service, Prineville, CA

Fig. 1. Plants growing in the chambers (L), and day-time (C) and night-time (R) stomatal conductance measurements on the plants.

Night-time conductance was measured under low-intensity green ambient light to prevent perturbation of stomata. After 35 days of O₃ exposure, the above- and below-ground biomass of the plants were measured. Data were analyzed using GLM procedures in SAS.

RESULTS AND DISCUSSION: Stomatal conductance of cotton exhibited a typical bell-shaped diurnal timecourse, whereas stomatal conductance of common waterhemp declined throughout the day with lower maximum values. High O₃ concentration and decreased irrigation level reduced the day-time stomatal conductance of cotton but not that of common waterhemp. High O₃ increased night-time stomatal conductance in cotton but not in common waterhemp. This difference in conductance was almost four-fold.

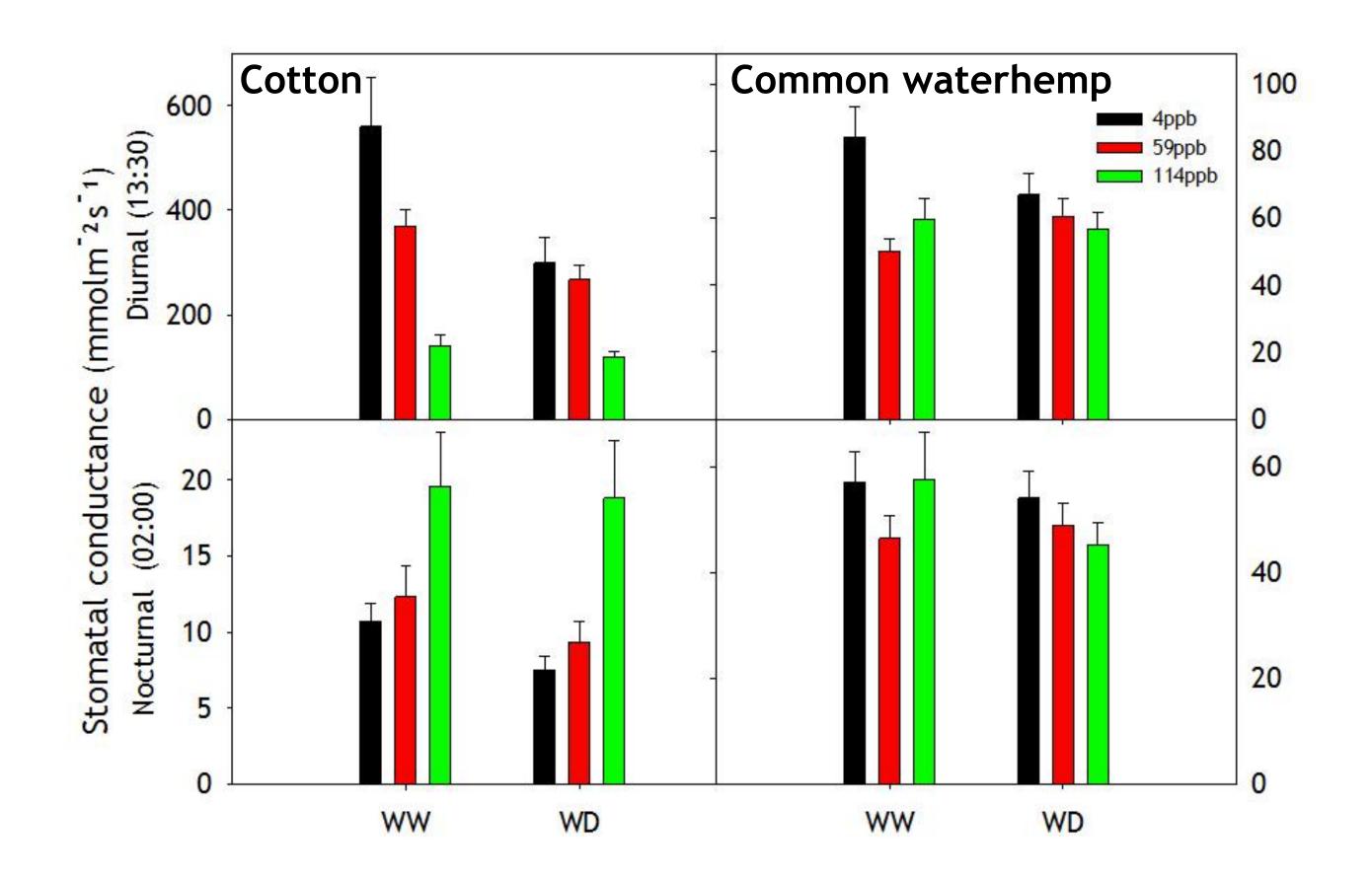


Fig.2. Responses of Stomatal conductance (gs) at representative diurnal (13.30) and Nocturnal (02:00) (± SE) in cotton (L) and common waterhemp (R) respectively.

Table 1.Impact of ozone and
field by Pin

Time of Day	Species	Ozone Treatment	Water Treatment	Stomatal Conductance	Transpiration	Transpiration
		ppb		mmol m ⁻² s ⁻¹	Mm hr ⁻¹	Mm month ⁻¹
02:00	Cotton	4	WW	10.7	0.055	
02:00	Cotton	114	WW	19.6	0.101	+8.2 in WW
02:00	Cotton	4	WD	7.5	0.038	
02:00	Cotton	114	WD	18.8	0.096	+10.4 in WD
02:00	Waterhemp	4	WW & WD	55.6	0.143	
02:00	Waterhemp	114	WW & WD	51.5	0.132	-1.9
13:30	Cotton	4	WW	560.3	5.75	
13:30	Cotton	114	WW	140.2	1.44	-388 in WW
13:30	Cotton	4	WD	298.4	3.06	
13:30	Cotton	114	WD	120.1	1.23	-165 in WD
13:30	Waterhemp	4	WW & WD	75.6	0.388	
13:30	Waterhemp	114	WW & WD	58.2	0.298	-8.0

¹Source: Leaf Area Index (LAI=4) for cotton (Grantz et al., 1993), LAI=2 for common waterhemp (Nordby and Hartzler ., 2004). Effect on transpiration is modeled as the difference between 114ppb and 4ppb O_3 , assuming 3 hours of average daytime transpiration and 6 hours of nocturnal transpiration per day for a 30 day month. Water treatments were combined for common waterhemp.

In cotton, nighttime (nocturnal) transpiration increased due to O_3 , but this was small compared to the large reduction in daytime transpiration. O₃ reduced water use by cotton. Water deficit (WD) reduced total transpiration, causing the nocturnal effect of O_3 to be slightly larger, but the day time effect to be much lower.

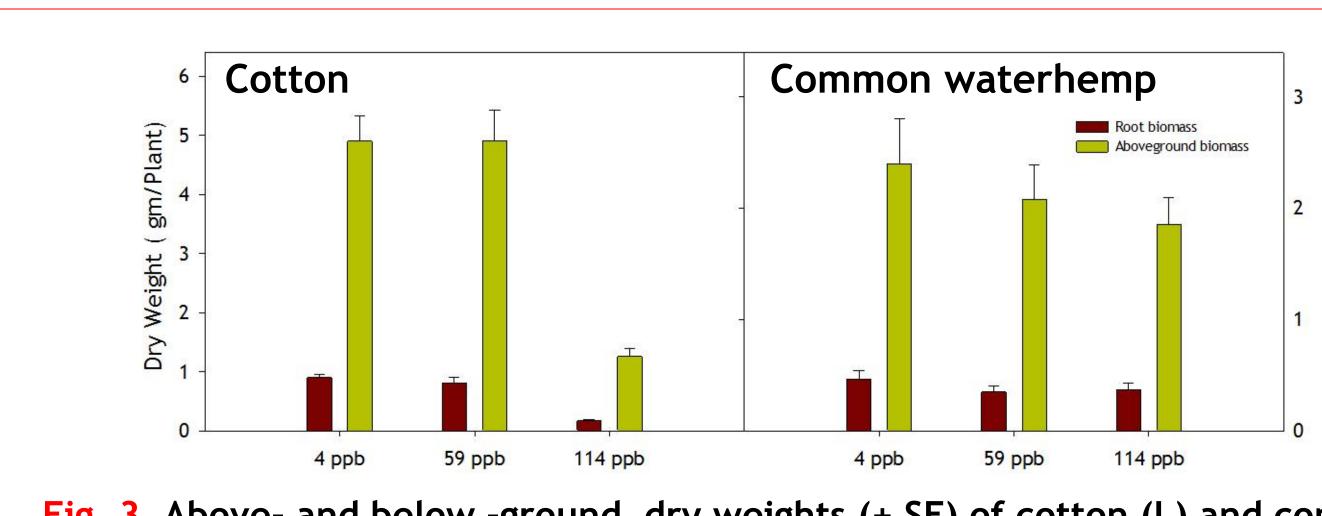


Fig. 3. Above- and below -ground dry weights (± SE) of cotton (L) and common waterhemp (R).

Above- and below-ground biomass was reduced by high O₃ in cotton but not in common waterhemp (Fig. 3).

CONCLUSION: High ground-level O₃ and water deficit may shift cropweed competition in favor of certain problematic weed species such as common waterhemp. Both high night-time stomatal conductance in common waterhemp and disruption of stomatal regulation by O_3 could alter landscape water and carbon budgets.

ACKNOWLEDGMENT: Harvey Scholarship/Jordan Assistantship to Rama Paudel, support from USDA Forest Service, and support from colleagues of Dept. of Plant Science, California State University, Fresno and University of California, Kearney Agricultural Research Center gratefully acknowledged.

water deficit on calculated water consumption in the ma cotton and common waterhemp.¹