

Cornell University

Weed community dynamics in cover crop-based, organic rotational no-till soybean

Caroline Halde¹, **Matthew R. Ryan**¹, and **Steven B. Mirsky**² ¹Department of Crop and Soil Sciences, Cornell University, Ithaca, NY, USA; and ²USDA-ARS, Beltsville, MD, USA.

Introduction

Cover crops can facilitate reductions in tillage, and recent research has shown that no-till planting of organic soybean into rolled-crimped cereal rye can result in weed suppression and soybean yields that are equivalent to tillage-based management.¹ Soybean population density and cereal rye biomass can interact synergistically to enhance weed suppression and soybean crop yield.² Moreover, as in conventional no-till systems, reductions in tillage in organic systems can result in weed community shifts toward perennial species.³

In this research, a range of cover crop mulch rates and soybean seeding rates was created to assess their weed suppressive ability and their effect on weed community composition and structure.

Materials and Methods

The study was conducted in 2008 and 2009 in Maryland and Pennsylvania using 5 levels of cereal rye residue representing 0, 0.5, 1, 1.5, and 2 times the ambient level, and 5 soybean seeding rates ranging from 0 to 74 seeds m⁻². A cereal rye cover crop was planted in the fall, then clipped and removed from the plots the following spring. Soybeans were seeded at 5 rates, before the clipped rye biomass was returned to the plots. Multivariate analyses were performed using the PC-ORD software package.⁴

Fig. 1: Rye mulch was placed on top of the seeded plots at 5 rates.

Results ■ Weed biomass

Fig. 2: Nonmetric multidimensional scaling (NMDS) ordination of weed community biomass across the 4 site-years (stress = 15.7, $r^2 = 0.36$ (axis 1), 0.24 (axis 2), 0.16 (axis 3), cumulative $r^2 = 0.76$).

Cov mu

(x = am mul leve

Soyl seed rate

- Weed biomass ranged from 0 to 967 g m⁻² across all site-years.

- The highest levels of weed biomass were observed in MD 2008 (246 g m⁻²), whereas the lowest levels were observed in PA 2009 (45 g m⁻²).

- Weed biomass decreased with increasing rye residue and decreased with increasing soybean density.

■ *NMDS* ordination

Fig. 3: Contour plot of soybean yield pooled across the 4 site-years.

Indicator species analysis

Table 1: Indicator species analysis of weed species in response to cover crop mulch rate and soybean seeding rate.

Factor of interest	Weed species			Indicator Regression analysis species analysis			
	Bayer code	Latin name	Traits ¹	Treatment associated with weed species ²	Regression equation with β-coefficients	r ²	<i>P</i> value
	(4GRAS)	4 summer annual grasses ³	SA, monocot	0x (45.4***)	y = -1.005x + 1.77	0.40	***
	AMACH	Amaranthus hybridus L.	A, dicot	0x (19.9***)	y = -0.542x + 0.83	0.17	***
	AMARE	Amaranthus retroflexus L.	SA, dicot	0x (17.8***)	y = -0.233x + 0.06	0.10	***
	AMBEL	Ambrosia artemisiifolia L.	A, dicot	0x (19.0***)	y = -0.381x + 0.34	0.17	***
	CHEAL	Chenopodium album L.	SA, dicot	0x (27.7***)	y = -0.164x - 0.02	0.15	***
	ERICA	Conyza canadensis (L.) Cronq.	WA/SA, dicot	0x (3.7*)	y = -0.010x - 0.29	0.01	*
over crop	EROCI	Erodium cicutarium (L.) L'He'r. ex Ait.	WA/B, dicot	0x (4.8*)	y = -0.010x - 0.29	0.01	*
ulch rate	ERYCH	Erysimum cheiranthoides L.	A/B, dicot	0x (7.7**)	y = -0.030x - 0.25	0.03	***
	GASCI	Galinsoga ciliata (Raf.) Blake	A, dicot	0.5x (7.4*)	y = -0.139x - 0.05	0.07	***
= the	LAMPU	Lamium purpureum L.	WA, dicot	0.5x (3.7*)		< 0.01	NS
nbient	MEDLU	Medicago lupulina L.	SA/WA/B, dicot	0x (3.3*)	y = -0.015x – 0.28	0.01	*
ulch	MELAL	<i>Silene alba</i> (P. Mill.) E.H.L. Krause	SA/WA/B/P, dicot	0x (5.0**)		< 0.01	NS
vel)	MOLVE	Mollugo verticillata L.	A, dicot	0x (12.0***)	y = -0.014x - 0.28	0.02	**
	OXAST	Oxalis stricta L.	P, dicot	0x (9.6**)		< 0.01	NS
	PHTAM	Phytolacca americana L.	P, dicot	0x (3.5*)	y = -0.003x - 0.30	0.01	*
	PLAMA	Plantago major L.	P, dicot	0x (11.3***)	y = -0.043x - 0.24	0.04	***
	POAAN	Poa annua L.	P/WA, monocot	0x (4.6*)	y = -0.004x - 0.30	0.02	**
	POLAV	Polygonum aviculare L.	SA, dicot	0x (4.1*)	y = -0.019x - 0.27	0.02	**
	(SMART)	Smartweeds (P. persicaria and pensylvanicum)	A, dicot	0x (15.7*)	y = -0.051x - 0.22	0.05	***
	RORIS	<i>Rorippa islandica</i> (Oeder) Borbas	A/B/P, dicot	0x (10.5***)	y = -0.036x – 0.24	0.03	***
	(RYE)	Secale cereale L.	A, monocot	0x (19.6***)	y = -0.200x + 0.04	0.10	***
	SOLPT	Solanum ptychanthum Dunal	SA/P, dicot	0x (16.2***)	y = -0.029x - 0.26	0.05	***
	TAROF	Taraxacum officinale G.H. Weber ex Wiggers	P, dicot	0x (24.8***)	y = -0.104x - 0.12	0.09	***
oybean	(4GRAS)	4 summer annual grasses ³	SA, monocot	0 seed m ⁻² (18.6*)	y = -0.002x + 1.00	0.02	**
eding	AMACH	Amaranthus hybridus L.	A, dicot	0 seed m ⁻² (14.0*)	y = -0.001x + 0.45	0.02	*
ite	POLCO	Polygonum convolvulus L.	SA, dicot	0 seed m ⁻² (10.5***)	y = -0.001x - 0.13	0.03	***

¹ Annual (A), biennial (B), perennial (P), summer (S), and winter (W).

² Indicator value and significance level are presented in parenthesis. Significance level: ***, **, and * indicate significant at $P \le 0.001$, $P \le 0.01$, and $P \le 0.05$, respectively. ³ Large crabgrass (Digitaria sanguinalis (L.) Scop.), barnyard grass (Echinochola crus-galli (L.) Beauv.), giant foxtail (Setaria faberi Herrm.), and yellow foxtail (Setaria glauca (L.) Beauv.) were pooled within each experimental unit.

Soybean crop performance

Conclusions

(Table 1).

system (Fig. 3).

The authors would like to thank technicians and summer students at Penn State University, Beltsville Agricultural Research Center, and Rodale Institute for their help with data collection. The authors would also like to thank John Teasdale, Dave Mortensen, and Bill Curran for their contribution.