Breeding Value of Host Plant Thrips Resistance for Reduced-Input Cotton Systems

Dylan Q. Wann^{*1,2}, Jane K. Dever², Megha N. Parajulee², and Mark D. Arnold² ¹ Dept. of Plant and Soil Science, Texas Tech University; ² Texas A&M AgriLife Research - Lubbock * Presenting author; e-mail at dylan.wann@ttu.edu

Introduction

- Thrips (Thysanoptera: Thripidae) management is an important component of cotton (Gossypium hirsutum L.) production systems on the Texas High Plains. Significant delays in crop maturity under heavy thrips pressure.
- Reduced cotton fiber quality and yield potential in severe scenarios. Thrips management has become more complicated with the loss of synthetic aldicarb as an insecticide.
- Host plant resistance can be a valuable tool for mitigating thrips injury to cotton seedlings, especially in reduced-input and organic production systems. Plant breeders need a better understanding of genetic nature of thrips resistance and its
- utility in cultivar development **Objectives:** Determine breeding value of thrips resistance in cotton through segregation
- analyses and heritability and gain from selection evaluations.

Materials and Methods

- **Location:** Texas A&M AgriLife Research and Extension Center at Lubbock and Halfway, 2011-2014.
- **Evaluations Conducted:**

- F₂ segregation analyses
- Broad-sense heritability evaluations
- Gain from selection evaluations
- **Segregation Analyses:** An interspecific F₂ population was evaluated in a greenhouse trial under elevated thrips pressure in 2011. Population was derived from G. hirsutum x G. barbadense cross ('CA 2266' x 'TX 110'). A field trial was also conducted in 2012 on another interspecific family ('07-7-1407CT' x 'Cobalt'). Individual plants were phenotyped at 4-5 true leaves using a visual thrips damage scale (1 = plant necrosis; 9 = no damage). Chi-square analyses were conducted to determine genetic segregation ratios. Heritability Evaluations: Five separate interspecific families were grown in a greenhouse evaluation under elevated thrips pressure. Parents and F₂ individuals were grown and phenotyped for visual thrips damage at 4-5 true leaves. Broad-sense heritability (H^2) estimates were conducted using variance components for each family. These evaluations were repeated at the field level in 2014, but abandoned due to severe glyphosate injury from non-target drift. **Gain From Selection Evaluation:** F₃ progeny from the aforementioned F₂ 07-7-1407CT x Cobalt population in 2012 were planted in progeny rows in 2013. Individual plants from each row were phenotyped for visual thrips injury at 4-5 true leaves and means were calculated for each F₃ row. Actual gain from selection (G_s) was determined by selecting the top 1%, 5%, and 10% resistant F_2 individuals and subtracting their mean performance as rows in the F₃ from the overall F_3 population mean. G_s is expressed as a percentage of the overall F_3 population mean (Frey and Horner, 1955).

Table 1.	Chi-square	analyses	of in
interspe	cific F ₂ popເ	ulations –	Lub

Family	Phenotypic Ratio	Observed		Expected		χ²	Ρ			
		Tol	Inter	<u>Susc</u>	Tol	Inter	Susc			
CA 2266 x TX 110	3:1	81		24	164		54	58.70	< 0.05	and the second se
(N = 218)	1:2:1	81	113	24	54	110	54	30.10	< 0.05	
07-7-1407CT x Cobalt	3:1	33		1	185		62	138.01	< 0.05	
(N = 247)	1:2:1	33	213	1	62	123	62	184.89	< 0.05	

Table 2. Broad-sense heritability (H²) estimates for resistance to thrips injury in five F₂ interspecific families – Lubbock, TX, 2013.

	H ²				
Family	Test 1	Test 2	Mean		
		·····%······			
CA 2266 x TX 110	36	45	41		
CA 3027 x TX 110	71	29	50		
07-7-519CT x Cobalt	66	60	63		
07-7-1001CT x Cobalt	69		69		
07-7-1407CT x Cobalt	78	56	67		
Rased on visual thrins injury ratin	gs conducted at 4	-5 true leaves			

Results

injury ratings for an F₂ population derived from a CA 2266 x TX 110 cross – Lubbock, TX, 2011.

ndividual plant phenotypes against expected ratios in two bock, Texas, 2011-2012.

Table 3. Thrips inju- F ₃ base populations Lubbock, TX, 2012-	iry means for s and actual g 2013.	selected F ₂ , gain from sele	F_3 progen ection (G_s)	y, and) –
Selection Intensity	Selected F ₂ Mean	F ₃ Progeny Mean	F ₃ Pop. Mean	G _s
				%
1%	5.1	5.5	3.6	51
5%	4.6	4.4	3.6	22
10%	4.5	3.9	3.6	9

Based on visual thrips injury ratings conducted at 4-5 true leaves.

Dise	cussion and Conclusions
•	Non-discrete phenotypes for thrips resistance – continuo
	- Did not fit known single- or two-gene phenotypic rati
•	Thrips resistance has a moderately high heritability in the
	varies by family.
•	Phenotypic gain per cycle of selection ranged 9-51%, as se
•	Other field evaluations of advanced breeding lines have sh
	resistance to thrips feeding over a commercial standard (d
•	Significant genetic improvement can be achieved through
	on selection intensity in a given cycle.
•	More research needed to elucidate value of resistant germ
	organic production systems.
•	Frey, K.J. and T. Horner. 1955. Comparison of actual and p

predicted gains in barley selection experiments. Agron. J. 47:186-188.

Fig. 2. Frequency density histogram of visual thrips injury ratings for a field F₂ population derived from a 07-7-1407CT x Cobalt cross – Lubbock, TX, 2012.

us phenotypic distribution

ios (partial data shown) e broad sense (35-77%), but

election intensity increased. hown a 37% improvement in lata not shown).

h visual selection, depending

nplasm in reduced-input and