

HC&S Mill

Introduction

 Renewable biomass resources presents a promising alternative energy and environment friendly by minimizing the net production of GHGs (Lynde, 2008). • High biomass production of biofuel feedstock can be achieved via both crop improvements and management practices and need to be sustainable in term of soil, water and environment.

• Allometric models can predict biomass, growth phases and economic yield nondestructively at any time (Ares *et al.*, 2002).

• Sugarcane, energycane and napier as biofeul grasses can produce large amounts of ABG and BG biomass (Meki *et al.*, 2014).

• These C_4 grasses can be grown by rationing (no-till) (Fig. 1), which leaves the lower part of the plant and soil intact, undisturbed.

• Compare to burning harvest (Fig. 2), ratooning can increase soil C sequestration and contributing to the sustainability of production system (Clifton-Brown et al., 2007), while simultaneously providing potential ABG biomass for energy production.

Overall Objectives

• Estimate ABG & BG biomass, C and N inputs for different biofuel crops cultivated as plant crop and ratoon cycles.

• Develop optimal allometric relationships to predict ABG biomass, C and N inputs. • Determine root death vs live proportion following ratoon harvest of napier and energycane and convention sugarcane as plant crop.

• Study the root decomposition pattern at different time series within soil depths to determine the decay constant (k) for each crop.

Hypothesis

 The quantities of ABG & BG biomass, C and N inputs differ across the biofuel crops due to positive relationship between ABG & BG pools,

• Ratooning (no-till) system will increase BG biomass and its C and N inputs. • The proportion of dead vs live root after harvest differ between crops and will control

the recovery system of each crop. • The root decay constant (k) differ across species and soil depths.

Materials and Methods

<u>Site</u>: Hawaiian Commercial and Sugar (HC&S) plantation in Central Maui (Fig.3).

Fig. 3: HC&S plantation and field map

• Nine plots (15x11m each) were established with 4 rows of grasses, and 2 lines/row.

• For all crops, 45 cm stem cuttings were planted on Oct. 3, 2011.

• The ABG biomass of ratoon napier and energycane was quantified using standard plant growth protocol.

• Alometric models were developed to predict ABG biomass for each crop. • 30 representative stalks of each crop that spanned a range of stalk (D) were selected. • Basal stalk (D), canopy and dewlap (H) for each individual stalk were measured. • ABG biomass estimates for individual stalks derived from the allometric models developed here compared to some existing generalized equations or predicting

biomass of tropical species.

Above and belowground biomass and C dynamics under ration and plant crop practices for biofuel feedstock production in Hawaii

Adel Youkhana⁽¹⁾, Susan Crow⁽¹⁾, James Kiniry⁽²⁾, Manyowa Meki⁽³⁾, Richard Ogoshi⁽¹⁾, Mae Nakahata⁽⁴⁾

⁽¹⁾University of Hawaii at Manoa, Honolulu, HI 96822. ⁽²⁾USDA, Agricultural Research Service, Grassland Soil and Water Research Laboratory, Temple, TX 76502. ⁽³⁾Texas A&M AgriLife Research, Blackland Research and Extension Center, Temple, TX 76502. ⁽⁴⁾Hawaiian Commercial & Sugar Company, P.O. Box 266, Puunene, HI 96784. Corresponding Author: 808-683-6260, adel@hawaii.edu

• Sugarcane, energycane and napier were selected as biofuel crops (Fig. 4).

Energycane

Sugarcane (1 yr) Fig. 4: One year ratoon energycane, napier and 1 & 2 yrs plant crop sugarcane • The root biomass of ratoon napier, energycane and plant crop sugarcane were determined volumetrically from excavated soil pits by depth: 0-40, 40-80 and 80-120 cm. • 6 pits, each (5x4ft) with 4ft depth were opened for each crop (Fig.5).

- Dead and live roots were sorted, and quantified.
- The C and N content of ABG & BG biomass were analyzed using elemental analyzer.
- Root:Shoot and C:N ratio were calculated for all crops.
- 3, 4, 6, and 9 months (Fig. 5).

• Root decay rates is fitted to a negative exponential decay model: $L_t = L_0 e^{-kt}$ L_t is the proportion of root mass at time t, L_o is the proportion of root mass at time zero, k is decomposition rate over the measured time interval. (Wider & Lang, 1982);

Fig. 6: Dead vs Live roots for sugarcane, napier and energycane

Results

• The 1yr ABG and BG biomass and C input were ranked as: energycane > sugarcane > napier grass (Table 1). • Energycane has deeper root system than napier grass and sugarcane. • The root biomass and its C input of 2 yrs sugarcane increased with tremendous spike. by (231%) & (175%) respectively compared to 1 yr sugarcane (Table 1). • The root systems of all crops were mainly restricted to the top 40 cm of soil. • The ration root masses of EC were significantly larger than SC plant crop. • The highest and significant average root: shoot ratio and root: total biomass proportion was found for one year napier grass, compare to energycane and sugarcane (Table 1), • The C:N ratios of total biomass ranged widely from 65 for napier grass to 124.29 for energy cane and it was significantly (p > 0.01) different across crops.

	EC	Napier	SC	SC	SC Change
	1 year	1 year	1 year	2 year	Yr1 - Yr2
	Biomass (Mg ha ⁻¹)				(%)
Aboveground	44.62 A	27.16 B	40.24 A	80.46	99.95
Belowground	4.63 A	3.82 B	3.83 B	12.70	231.59
Total	49.25 A	30.98 B	44.07 A	93.16	111.39
Root:Shoot ratio	0.10 B	0.14 A	0.10 B	0.16	65.84
Root:Total ratio	0.09 B	0.12 A	0.09 B	0.14	43.23
	Carbon (Mg ha-1)				(%)
Aboveground	19.20 A	11.52 B	18.13 A	36.34	100.44
Belowground	1.93 A	1.53 B	1.95 A	5.37	175.38
Total	21.13 A	13.05 B	20.08 A	41.71	107.72
	Nitrogen (Mg ha-1)				(%)
Aboveground	0.15 B	0.18 A	0.20 A	0.36	80.00
Belowground	0.02 A	0.02 A	0.01 A	0.07	16.67
Total	0.17 B	0.20 A	0.21 A	0.43	65.38
C:N ratio	124.29 A	65.25 C	95.62 B	97	25.60

Root decay experiment was carried out within 3 depths using litter bag method for 1, 2,

Table 1: Riomass C and N components

Results & Discussion

• For all allometric equations, a simple power model (Y= aX^b) provided the optimal prediction of ABG biomass and its C and N inputs. • Stalk D (Fig. 7) and dewlap H were good predictors for ABG biomass.

Fig. 7: Allometric models for predicting ABG biomass (g) from stalk D (cm) in individuals of: biofuel crops. • The dead versus live roots% for ratoon energycane and napier grass were 70 to 30% and 11 to 89% respectively (Fig. 8), and for 2 yrs plant crop sugarcane were 41 to 59% after harvest.

Fig. 8: Dead vs live root mass (%) proportion for one year biofuel crops

• Decay constants (K) were different at marginal significance across species (Fig. 10). • Napier grass had statistically greater (k).

• Root decay constants for all crops were higher at surface soil (0-40 cm).

Fig. 9: Root decay constant (K) of: sugarcane, energycane and napier grass at (0-40) cm depth • The root turnover results shows good evidence of quick recovery and rapid flush of new shoots by the root system we have observed with napier grass after harvest.

• The high biomass production characteristic of ratooning grown biofuel crops can sequester and add a large quantity of C back to the soil in the form of root biomass to achieve a sustainable cropping system of biofuel feedstock.

Conclusion

• The study showed that the energycane production system meets the most important criteria (especially the potential for high yields, its deep rooting characteristics, and its potential value in C sequestration) for a reliable feedstock candidate for future sustainable energy production system.

Acknowledgements

University of Hawaii at Manoa.

• Funds were provided by the Office of Naval Research (ONR) to the USDA-ARS (grand # 60-0202-3-001), this work was supported through a Specific Cooperative Agreement with