

Nitrogen Sources and Soil-Root Interactions Affect the Phosphorus Pools

<u>Elialdo Alves Souza</u>, Ciro Antonio Rosolem, Janaina Matias, Aline Silva Sandim, Maximila Sofia Alves Martins

São Paulo State University, College of Agricultural Sciences, C.P.237, Botucatu, AL 18603-970, Brazil ,email: eli_agronomo@yahoo.com.br

INTRODUCTION

N sources can change the conditions at root-soil interface, P availability to plants and P levels in different pools. N-ammonium uptake increases proton release (H⁺), the work of symporters $H^+/H_2PO_4^-$ and decreases rhizosphere pH, while N-nitrate induces H⁺ uptake by a H⁺ cotransport system and alkalizes the rhizosphere. These processes can affect the P solubilization and to change P forms in the soil.

OBJECTIVE

The aim of this work is to study the impact of different N sources (ammonium-N, nitric-N and both) on the different P fractions in rhizosphere soil.

MATERIALS AND METHODS

15 treatments: three N fertilizers (calcium nitrate, ammonium sulfate and both) were combined with five P doses (0, 40, 80, 120 and 160 mg kg⁻¹) like triple superphosphate . N dose applied: 240 mg kg⁻¹ \rightarrow 4 replicates \rightarrow CRD

Greenhouse → Pots of 12 L → 2 plants for pot (Zea mays L.) → One month after emergence (Dec 11 2013) the soils were collected

Soil samples:

Separation of rhizosphere soil by shaking and washing (Liu et al., 2004) → Fresh soil (10 g) were oven-dried at 60°C for 72 h

Analysis (Air Dried Soil):

pH (CaCl₂) (Raij et al., 2001) and P fractionation (Hedley et al., 1982; Condron et al., 1985)

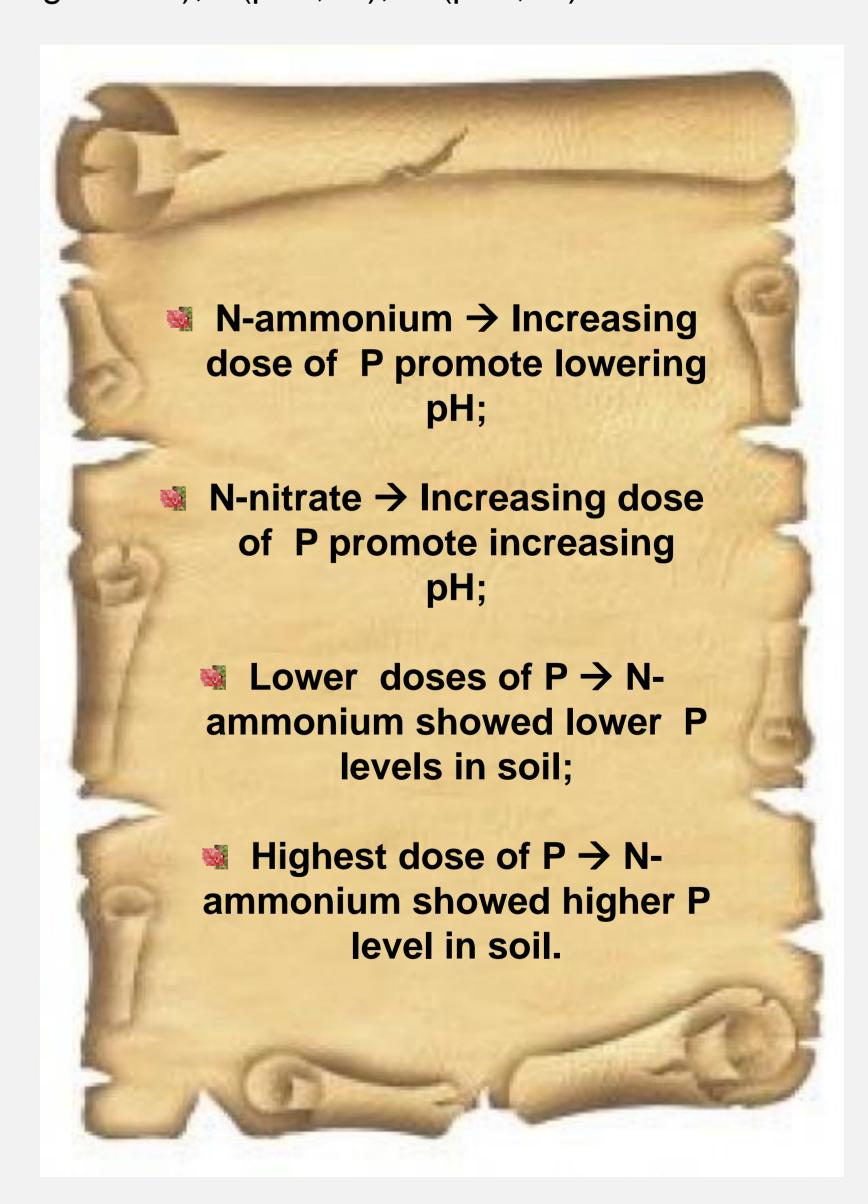
RESULTS

Table 1: Labile, moderately labile and non-labile P in rhizosphere soil.

in rhizosphere soil.						
Labile P (mg kg ⁻¹)						
	Form of N					
Doses of P (mg kg ⁻¹)	NITRATE	AMMONIUM	NITRATE/ AMMONIUM			
0	9.84 a	3.93 b	3.52 b			
40	12.07 a	7.13 b	6.34 c			
80	14.87 a	11.02 b	9.49 c			
120	16.49 a	16.82 a	16.72 a			
160	19.55 c	21.18 a	20.55 b			
ED	L**	L**	L**			
CV (%)	3.07					
Moderately Labile P (mg kg ⁻¹)						
0	64.18 a	58.48 b	57.33 b			
40	66.10 a	54.23 b	50.65 b			
80	70.31 a	53.43 b	44.48 c			
120	71.29 a	72.18 a	44.27 b			
160	73.21 b	82.84 a	36.57 c			
ED	L**	Q**	L**			
CV (%)	5.30					
Non-labile P (mg kg ⁻¹)						
0	9.84 a	3.93 b	3.52 b			
40	12.07 a	7.13 b	6.34 c			
80	14.87 a	11.02 b	9.49 c			
120	16.49 a	16.82 a	16.72 a			
160	19.55 c	21.18 a	20.55 b			
ED	L**	L**	L**			
CV (%)		3.37				
		1 141				

Letters on the lines denote significant difference by Tukey Test (p<0,05). ED (Effect of Doses) by regression: L (linear); Q (quadratic); NS (not significant); * (p<0,05); ** (p<0,01).

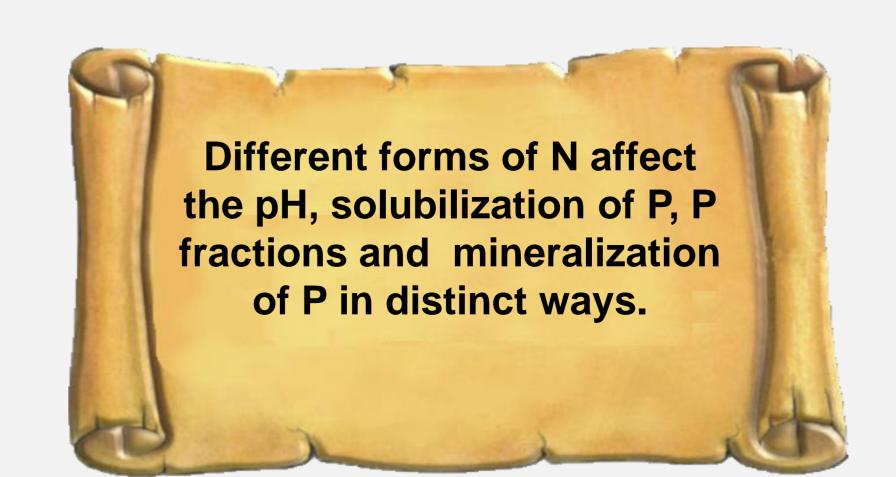
Table 2: Geochemical, biological and total P in rhizosphere soil.


	Geochemica	l P (mg kg ⁻¹)			
	Form of N				
Doses of P (mg kg ⁻¹)	NITRATE	AMMONIUM	NITRATE/ AMMONIUM		
0	854.11 b	786.69 c	990.04 a		
40	921.27 b	849.00 c	979.99 a		
80	1031.38 a	869.02 c	925.38 b		
120	963.26 a	881.29 b	994.16 a		
160	980.12 a	890.01 b	943.48 a		
ED	Q**	L**	NS		
CV (%)	4.31				
	Biological	P (mg kg ⁻¹)			
0	66.36 b	80.05 a	66.15 b		
40	63.56 b	59.55 b	70.66 a		
80	62.98 a	46.18 c	57.73 b		
120	60.72 b	73.86 a	61.96 b		
160	68.24 b	112.79 a	51.38 c		
ED	Q**	Q**	NS		
CV (%)		4.26			
Total P (mg kg ⁻¹)					
0	1009.67 a	1007.92 a	1013.51 a		
40	958.82 c	1001.76 b	1026.73 a		
80	846.68 c	971.05 b	1009.64 a		
120	924.53 c	959.92 b	987.23 a		
160	985.00 c	1025.58 b	1048.21 a		
ED	Q**	Q**	NS		
CV (%)	5.17				

Letters on the lines denote significant difference by Tukey Test (p<0,05). ED (Effect of Doses) by regression: L (linear); Q (quadratic); NS (not significant); * (p<0,05); ** (p<0,01).

Table 3: pH in rhizosphere soil.

pH (mg kg ⁻¹)					
	Form of N				
Doses of P (mg kg ⁻¹)	NITRATE	AMMONIUM	NITRATE/ AMMONIUM		
0	5.29 a	5.06 b	5.11 b		
40	5.35 a	4.85 c	4.98 b		
80	5.37 a	4.79 b	4.73 c		
120	5.44 a	4.62 c	4.82 b		
160	5.78 a	4.59 c	4.84 b		
ED	Q**	L**	Q**		
CV (%)	2.05				


Letters on the lines denote significant difference by Tukey Test (p<0,05). ED (Effect of Doses) by regression: L (linear); Q (quadratic); NS (not significant); * (p<0,05); ** (p<0,01).

CONCLUSIONS

N-ammonium promote solubilization even in non-labile P forms and this behavior enhance P uptake of all fractions.

N-nitrate promote less solubilization of P, less consumption in all fractions and higher levels of P in the soil after maize cultivation.

