

Effects Of High Molecular Weight Glutenin On Wheat Quality

Xinzhong Zhang^{1,3}, Guorong Zhang¹, Guihua Bai² and Rebecca A Miller¹

(1) Agricultural Research Center-Hays, Kansas State University, Hays, KS 67601; (2) USDA-ARS, Manhattan, KS 66502; (3) Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, Jiangsu, China 225009.

INTRODUCTION

Wheat (*Triticum aestivum* L.) is one of the most important food grains in the world. Wheat dough has the unique rheological properties for bread making. High-molecular-weight glutenin subunits (HMW-GS) play an important role on wheat quality. HMW-GS are encoded at *Glu-A1*, *Glu-B1* and *Glu-D1* loci on the long arms of group 1 chromosomes. At each locus, there are two genes encoding x and y type subunits. However, not all subunits are always expressed. Variations of those subunits strongly affects wheat qualities. Subunits AxI or $Ax2^*$ are positively correlated with bread making quality compared with null subunit at Glu-A1[1]. Positive effects on bread making were also reported for subunit pairs Bx7+By8, Bx7+By9, Bx14+By15, Bx17+By18 at Glu-B1[2-3]. The subunit pair Dx5+Dy10had more significant effects on mixing time, SDS-sedimentation, dough strength, and loaf volume than $Dx^{2}+Dy^{12}$ at *Glu-D1* [1-4]. Additionally, interactions among those subunits also affect wheat qualities[4]. Sodium-dodecyl-sulphate polyacrylamide gel electrophoresis (SDS-PAGE) is the traditional method to detect HMW-GS. However, a number of functional markers have been developed to determine the HMW-GS, which make it more convenient[5-6]. In this study, a large set of breeding lines developed at Kansas State University were investigated for quality traits and HMW-GS with molecular markers.

OBJECTIVES

Estimate the composition of HMW-GS in the breeding lines
Determine the effects of the HMW-GS on wheat quality
Develop prediction models for wheat quality

MATERIALS AND METHODS

D Materials

- 458 wheat breeding lines developed at Agricultural Research Center-Hays, Kansas State University
- □ Wheat quality evaluation
- Flour protein, ash content, flour yield, water absorption, mixing time, loaf volume, and grain score were determined by standard AACCI methods.

*Figure 1. Effects of HMW-GS on wheat quality *Blue bar is the mean of breeding lines without the subunit, and red bar is the mean of breeding*

lines having the subunit.

□ Prediction model for wheat quality (Table 2)

- > Prediction models were developed for flour yield, mixing time, and loaf volume.
- > Protein quantity had significant effects on wheat quality and it was included in prediction models.
- > Interaction between HMW-GS also affect wheat quality: flour yield was affected by the interaction between Bx7 and Dy10 while mixing time was affected by the interaction between Dx2 and Dy10.

Table 2. Prediction models for wheat quality based on flour protein and HMW-GS

Quality Trait	Prediction Model				
Flour yield (%)	y=56.059 + 1.150*FP -1.563*(<i>Bx7</i> × <i>Dy10</i>)				
Mixing time (min)	y=5.523 - 0.192*FP + 0.807* <i>Dy10</i> - 0.357*(<i>Dx2</i> × <i>Dy10</i>)				

- Genotyping using functional markers
- Leaf tissues were collected at two-leaf stage and DNA were extracted by CTAB method.
- Function markers for subunits Ax^{2*} , Bx^{7} , Dx^{2} , Dx^{5} , Dy^{10} and Dy^{12} were analyzed.

□ Statistical analysis

- *t* test was used to determine the effects of HMW-GS on wheat quality.
- Regression was used to construct prediction models.

RESULTS AND DISCUSSION

Composition of HMW glutenin subunits (Table 1)

- > Ax2*, Bx7, Dx5, and Dy10 were the prevailing subunits
- > Dx5+Dy10 was the prevailing subunit pair at *Glu-D1* locus

Table 1. Composition of HMW-GS in 458 wheat breeding lines

Subunit	$Ax2^*$	Bx7	Dx2	Dx5	<i>Dy10</i>	<i>Dy12</i>	Dx2+Dy10	Dx2+Dy12	Dx5+Dy10	Dx5+Dy12
%	68.6	97.8	20.9	87.9	88.8	20.5	10.2	20.3	87.1	10.0

Effects of HMW-GS on wheat quality (Figure 1)

- > Ax2* had significantly positive effects on loaf volume.
- > Dx5, Dy10, or Dx5+Dy10 had significantly positive effects on mixing time and loaf volume,

Loaf volume (CC)

y=508.731 + 33.242*FP + 14.699**A*x2* + 35.523**D*y10

× : interaction between two subunitsFP: flour protein content

- \square Ax2*, Bx7, Dx5 and Dy10 were the prevailing HMW subunits in the breeding lines.
- □ HMW glutenin subunits had significant effects on flour yield, mixing time and loaf volume, but not on water absorption and grain score.
- Protein quantity and interaction between certain HMW-GS also played an important role on wheat quality.

Literature Cited:

- Payne, P.I. 1987. Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Plant Biology 38:141-153
- 2. Payne, P.I. and K.G. Corfield. 1979. Subunit composition of wheat glutenin proteins, isolated by gel filtration in a dissociating medium. Planta 145:83-88
- 3. Nakamura, H. 2000. The relationship between High-Molecular-Weight glutenin subunit composition and the quality of Japanese hexaploid wheat lines. J. Agric. Food Chem. 48:2648-2652
- 4. Kolster, P., F.A. Eeuwijk and W.M.J. Gelder. 1991. Additive and epistatic effects of allelic variation at the high molecular weight glutenin subunit loci in determining the bread-making quality of breeding lines of wheat. Euphytica 55:277-285

but negative effects on flour yield.

> Dx2, Dy12, or Dx2+Dy12 had had significant positive effects on flour yield, but negative effects on mixing time and loaf volume.

Ma, W., W. Zhang and K.R. Gale. 2003. Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica 134:51-60
 Liu, Y., Z. He, R. Appels and X. Xia. 2012. Functional markers in wheat: current status and future prospects. Theor Appl. Genet. 125:1-10