

Genetic Introgression from *Glycine tomentella* to Soybean to Increase Seed Yield

Abraham Akpertey¹, Ram Singh², Carrie Thurber³, Brian Diers¹, George Graef⁴, Rouf Mian⁵, Grover Shannon⁶, Andrew Scaboo⁶, Patrick Brown⁷, and Randall Nelson⁸

¹Dep. of Crop Sci., Univ. of Illinois, Urbana, IL; ²USDA-ARS, Urbana, IL; ³EBI, Univ. of Illinois, Urbana, IL; ⁴Univ. of Nebraska, Lincoln, NE; ⁵USDA-ARS/The Ohio State Univ., Wooster, OH; ⁶Div. of Plant Sciences, Univ. of Missouri, MO; ⁷IGB, Univ. of Illinois, Urbana, IL; ⁸USDA-ARS and Univ. of Illinois, Urbana, IL

Objectives

Solution Solution Second Second

To determine the genetic contribution of PI 441001 to the derived lines.

15Table 1. Data for high yielding lines, the recurrent
parent Dwight, and the best check from Test II from 12
environments in Nebraska, Missouri, Illinois and Ohio101010101010101010101010101111111112131415161718191010101010111213141516171819191010101011121314151516171819191910101011121314151516171819

 BC^{\dagger} Yield Mat. Ldg. Hgt. BC_2 (kg/ha) (days) (1 to 5) (cm) Parent

Results and Discussion

Materials and Methods

Field of G. max \times G. tomentella backcross lines

G. tomentella

Population development

The *G. max* × *G. tomentella* backcross lines were developed using the cultivar Dwight and the perennial *Glycine* species, *G. tomentella* PI 441001. PI 441001 was crossed to Dwight and immature seed rescue was used to produce a sterile F_1 plant. Amphidiploid plants (2n=118) were produced by treating the F_1 hybrid with colchicine. Amphidiploid plants were backcrossed to Dwight to obtain BC₁ plants. A series of backcrosses were made with eight different BC₂ plants to obtain BC₃, BC₄, BC₅ and BC₆ lines with 2n=40 chromosomes.

Entry		(kg/ha)	(days)	(1 to 5)	(cm)	Parent
LG11-1222	5	+311	0	0	-6	06H1-3
LG10-12313	4	+306	1	0.3	-1	06H1-3
IA2102		+294	-2	0.4	0	
Dwight		4194	Sept. 16	1.9	86	
LSD (0.05)		240	1.0	0.2	3.0	
L5D(0.05)		Z4 0	1.0	U. <i>Z</i>	3.0	

[†]Backcrosses

Table 2. Data for high yielding lines from different BC₂ parents, the recurrent parent Dwight, and the best check from Test III from 11 environments in Nebraska, Missouri, Illinois and Ohio in 2013 and 2014.

BC [†]	Yield	Mat.	Ldg.	Hgt.	BC ₂
	(kg/ha)	(days)	(1 to 5)	(cm)	Paren
3	+483	6	0.5	6	06H1-3
3	+299	8	0.2	2	07H1-7
3	+281	6	0.1	6	06H1- 1
4	+239	7	0.3	7	07H1-1
	+493	6	0.1	5	
	3529	Sept. 13	1.8	80	
	203	1.0	0.2	3.1	
	3 3 3	(kg/ha) 3 +483 3 +299 3 +299 3 +281 4 +239 +493 3529	(kg/ha) (days) 3 +483 6 3 +299 8 3 +281 6 4 +239 7 +493 6 6 3 529 8	(kg/ha)(days)(1 to 5)3+4836 0.5 3+2998 0.2 3+2816 0.1 4+2397 0.3 -+4936 0.1 13529Sept. 13 1.8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

135791113151719Figure 2. Manhattan plot depicting association
between 6833 SNPs with maturity, distributed across
the 20 soybean chromosomes.

From each test, we identified lines that were higher yielding than Dwight, the recurrent parent (Tables 1, 2 and 3). These superior lines were derived from 5 different BC₂ plants. Each BC₂ plant is likely to have a different complement of *G. tomentella* chromosomes. In Tests II and III, the highest yielding experimental lines were similar in maturity and yield to the best checks in each test. In Test IV the highest yielding experimental line was 7 d earlier than the best check.

A Manhattan plot (Fig. 1) of the association between seed yield and SNPs obtained from GBS showed 5 SNPs on chromosomes 15 and 19 that were significantly (-log 10 P > 7) associated with seed yield. The most significant SNP (arrowed) at 15.3 Mbp on chromosome 15 was associated with a 120 kg/ha, 119 kg/ha and 252 kg/ha increase in yield in Tests II, III and IV, respectively.

Field procedures

Preliminary yield testing of inbred lines from these crosses was used to select 180 lines in maturity groups II, III, and IV. The derived lines and checks were evaluated in two replication tests in eleven to twelve environments in Illinois, Ohio, Missouri and Nebraska in 2013 and 2014.

Genotyping procedures

All experimental and parental lines were genotyped using genotyping by sequencing (GBS). GBS libraries were prepared using *HindIII-Bfa1* and *HindIII-Hinp1* enzyme combinations.

*Backcrosses

Table 3. Data for high yielding lines from different BC2parents, the recurrent parent Dwight, and best check forTest IV from 11 environments in Nebraska, Missouri,Illinois and Ohio in 2013 and 2014.

	BC†	Yield	Mat.	Ldg.	Hgt.	BC ₂
Entry		(kg/ha)	(days)	(1 to 5)	(cm)	Parent
LG11-3187	3	+513	6	0.1	5	06H1-1
LG09-12682	2 3	+355	8	-0.4	1	06H1-3
LG11-4475	5	+269	7	0.2	3	07H6-17
IA4005		+724	13	-0.2	0	
Dwight		3624	Sept. 14	1.9	81	
LSd (0.05)		185	1	0.2	3.0	
[†] Backcrosses		1			I	

Fig. 2 shows a Manhattan plot of the association between the tested SNPs and date of maturity. A large number of SNPs (> 100) on chromosome 4 and a moderate number of SNPs (< 50) on chromosomes 12 and 18 that were significantly (-log10 P > 7) associated with maturity were identified.

The significant SNPs for seed yield and maturity are located on different chromosomes, indicating that the yield loci are separate from the maturity loci.

Conclusions

Sequencing was done with Illumina HiSeq 2500 at the W.M. Keck Center at the University of Illinois.

Statistical analysis

The field data were analyzed using the PROC Mixed and GLM functions in SAS (SAS 9.3, SAS Institute, Cary NC). GBS data was analyzed using the TASSEL GBS pipeline (Buckler lab for maize genetics and diversity, http://www.maizegenetics.net/). Association analysis was performed in R using a simple linear model.

135791113151719Figure 1. Manhattan plot depicting associationbetween 6833 SNPs with seed yield, distributedacross the 20 soybean chromosomes.

Wide hybridization between G. tomentella and soybean can result in lines with increased seed yield.

Because of the large genetic differences between soybean and G. tomentella, it is likely that the yield increases are a result of genes not in G. max.

The highest yielding lines are good candidates for inclusion in breeding programs.

