Integrated Assessment of Climate-change Impacts on Maize Farm Household Incomes in South India: A Case Study from Tamil Nadu Model Intercomparison Paramasivam Ponnusamy, Geethalakshmi Vellingiri, Lakshmanan Arunachalam, Sonali P. McDermid

1. Irrigated maize farm system and the analytical protocol

Irrigated maize farm system of Tamil Nadu and the analytical protocol

In Tamil Nadu Maize-

Future climate projections made using "delta" method for near term, mid and end century. RCP 8.5 used in crop-model simulations for 20 CMIP5 GCMs. For the crop-model and agro-economic analyses, five GCMs viz., CCSM4, GFDL-ESM2M, HadGEM2-ES, MIROC5, and MPI-EMS-MR used. All models show warming, while precipitation response is decidedly more uncertain. While all temperature changes are significant, several GCMs show insignificant precipitation changes, although three of the five selected GCMs show a strongly (positive) significant rainfall response change.

Livestock such as goat, cow and poultry play a significant role as an alternative livelihood option, regular employment and income generation activity. Farm household, agriculture and livestock components are complimentary and depend on each other on day-to-day basis.

ClimateCurrentFutureCurrentFutureFuturesystemCurrentCurrent (C)C with trend (t)C with tC with t

Projected changes in monthly mean temperature and rainfall for RCP 8.5 mid-century in Coimbatore. Black lines and stars indicate the baseline climate and the box-whisker plots show the spread in projections amongst the 20 GCMs taken from CMIP5. Averages for the annual (ann), January to March (JFM), April to June (AMJ), July to September (JAS), and October to December (OND) are shown at the far right of each plot.

3. Crop model projections

Calibrated DSSAT and APSIM with 2010–11 weather data and farm survey input data used to simulate irrigated maize yield for 60 farms. Strong correlation between simulated and reported yields observed. Historical baseline yield projections (1980–2010) for 60 farms exhibited heterogeneity due to management differences.

Future yield projections of RCP 8.5 mid-century

Projected changes (percentage deviation) in APSIM and DSSAT simulated maize yields for the future climate scenarios.

4. Integrated assessment of Climate change sensitivity and impacts

RAPs derived variable values used for TOA integrated assessment

Variable	Q1		Q2	
	System1	system2	System1	system2
HH size	4.38	4.38	3.29 (25 % decrease over Q1)	3.29
Non Farm	32778	32778	45889	45889
Farm size	1.85	1.85	2.31 (25 % increase over Q1)	2.31
Maize yield	As per survey	crop model based estimation	1.97 times Q1 sys1 Based on IMPACT trend	Crop model based
Yield of other crops (Rs)	62990	50077 10% decrease over sys1	75588 20 % increae over Q1 sys1	68029 10% decrease over sys1
Maize price	10.1 As per survey	10.1	1.4 times IMPACT trends	1.15 times of sys1 Q2 (IMPACT)
Maize var cost	As per survey	Calculated as per protocol	1.97 times of Q1 IMPACT trends and (As per RAPs)	Calculated as per protoco
Var Cost of other crops	30838	30838	38548 (1.25 times) (As per RAPs)	46257 (20 % rise)
SD Net	27237	27237	31550	21518
Fixed cost_maize				
Livesteel	00050	00470	70005 (400(rise)	70700

Sensitivity of the current irrigated maize-production system in Tamil Nadu to climate change

Impact of climate change on future irrigated-maize-production system in Tamil Nadu.

Climate Change Impact (Net Impacts as Per cent of	Climate Change Impact (Net Impacts as Per ce

under selected five GCMs for the 60 farms under both DSSAT and APSIM models indicated possibilit^{**} of yield decline with varying magnitude. DSSAT simulated positive yield deviation under CCSM4, MIROC5 and MPI-ESM-MR, and negative deviatior under GFDL-ESM2M and HadGEM2-ES. In APSIM^{**} all GCM forcings projected negative deviation..

Sensitivity of Current P System to Climate Change : APSIM simulations relating current system sensitivity consistently indicated lower yields under climate change, lower mean net returns, lower per capita income, and higher poverty levels for System 2 on irrigated maize farms. DSSAT results projected positive impacts. The results were fairly consistent across GCMs between APSIM and DSSAT. Maize-crop yield as such is sensitive to the crop model used to predict yields, followed by climate projections represented by the GCMs.

Considering **climate-change impact**, future system returns are projected to be higher, mainly due to improvements in yields, incomes, prices, and non-farm incomes of the system components. There would be higher per capita incomes and poverty rates drastically reduced to less than 5%. except in MIROC5 where there was a negligible decline of 0.05%. Climate-change impacts seem to be influenced by crop models and GCMs in that order.

5. Adaptation package and maize yields with adaptation

The adaptation package envisaged includes altered sowing dates and the use of water-saving measures through drip irrigation, which does not affect the quantum of water normally available to a maize crop. Water saved is to be used for improving yield of fodder sorghum, which can contribute to increased returns from other crops and livestock.

DSSAT and APSIM simulated maize yields under RCP 8.5 mid-century with changed date of sowing and irrigation infrastructure showed that crop yields would Per cent Yield change under RCP 8.5 mid-century climate, with altered date of sowing.

DSSAT and APSIM projected changes in maize-grain yields with date-of-sowing (DOS) adaptation compared to climate-impacted future yields without adaptation in Coimbatore.

6. Impacts of adaptation

RAPs derived variable values used for TOA adaptation impact assessment

Q3		
System1	system2	
3.29	3.29	
45889	45889	
2.31	2.31	
As in Sys2 Q2	Crop model based	
68029	74832 (10% rise)	
as in Q2 sys1	as in Q2 sys1	
as in Q2 sys1	As per protocol	
46257	48570 (5% rise)	
21518	24735	
	25000 Drip adoption	
72793	80073 (10 % increase)	
33885	35580 (5% increase)	
18190	19189	
	Q3 System1 3.29 45889 2.31 As in Sys2 Q2 68029 as in Q2 sys1 as in Q2 sys1 46257 21518 72793 33885 18190	

Impact of adaptation package on future maize-production system in Tamil Nadu.

The adaptation package proved with implied adoption rate of about or more than 90% in most GCMs and APSIM and DSSAT, except in MIROC5 with lowest rates both for DSSAT with 31.02% and APSIM with 84.09%, since the future projected yield with climate change was highest in MIROC5. APSIM indicated yields increase of 3.59% to 6.15% across the GCMs, while DSSAT projections were in the range 19.64% to 27.09%. Poverty rates of households, per capita incomes levels, and mean farm net returns have shown similar responses when compared to climate-change scenarios as per different GCMs, with and without adaptations.

Net farm returns and per capita income increase across all GCMs, and by using both APSIM and DSSAT, though the magnitudes of the increases differed across GCMs. MIROC5 was again associated with least increase. Adoption of the package increased farm returns, per capita income, and reduce poverty, which indicates the mitigating effects and benefits of an adaptation package to climate change

significantly increase in the future. Altering sowing window reduced climate change impact and increased maize yields relative to baseline conditions. All five RCPs used projected positive yield deviations, ranging from 14.82% to 18.37% in DSSAT and 22 3.38% to 5.55% in APSIM.

Acknowledgements

CSIRO

We appreciate the University authorities of TNAU for their support in successful implementation of this project. We thank the funding agencies for providing financial support. We thank AgMIP leadership for their valuable comments and support throughout the project.

