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« Temperature sensitivity (Q,,) of enzymes decreased minimally along temperature
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C acquisition enzyme [3-D-glucosidase BG MUF 3-D-glycopyranoside enzymes over the range of 15°C to 25°C. g ( g )
Xylanase XYL Xylan
N acquisition enzyme Leucine aminopeptidase LAP L-leucine hydrochloride
N-Acetyl-3-D glucosaminidase NAG N-MUF 3-D glucosaminide
P acquisition enzyme Phosphomonoesterase PHO MUF phosphate
Phosphodiesterase BPHO Bis-(MUF) phosphate » Enzymatic potential to hydrolyzing organic matter increased (higher Vmax & lower Km) as a function of temperature.

* Microbes become increasingly nutrient limited at higher temperature.

o Nutrient starvation of microbes at higher temperature likely driving enzyme resource allocation.
o N:P stoichiometry indicated that microbes invest their nitrogen reserve in phosphorus production at higher temperature.

« Temperature response of enzyme kinetics was tied to stoichiometry of microbial nutrient demand.
o Current biogeochemical models could be improved by incorporating stoichiometry of enzyme kinetics.
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