
Emmanuel Arthur1(Emmanuel.Arthur@agro.au.dk), Markus Tuller2, Per Moldrup3, Lis W. de Jonge1
1Dept. of Agroecology, Aarhus University, Denmark. 2Dept. of Soil, Water and Environ. Sci. The Univ. of Arizona, USA. 3Dept. of Civil Engineering, Aalborg University, Denmark.

Introduction
- Water sorption hysteresis (H) is the difference exhibited in the relationship between the water content (w) of a soil and the corresponding water potential/relative humidity (RH) obtained by wetting or drying
- Extensive literature exist on causes and quantification of H for soil water potential range from 0 to -1.5 MPa but information on H is limited for water potentials < -10 MPa
- Consideration of H in the range from -10 to -480 MPa is crucial for modeling physical and biological soil processes

Objectives
- Assess and compare recently developed methods for quantifying water vapor sorption hysteresis in soils and pure clays for the water potential range of -10 to -480 MPa
- Investigate the role of organic matter (OM) and clay content and type on water vapor hysteresis

Methods
- Investigated Samples

 Five pure clays: Kaolinite, Illite, Vermiculite, Halloysite Montmorillonite

 Two groups of soils
 (i) Six soils with clay gradient (11-46%) and OM~2.6%, and clay content~11%
 (ii)20 soils, OM gradient (3-15%) and clay content gradient soils

- Sorption Isotherm Measurements
 Wetting and drying isotherms measured with Vapor Sorption Analyzer (~10 to -480 MPa; pf 5.0 to 6.6; RH 3 to 93%)

- Hysteresis Quantification Methods
 (i) Based on number of molecular layers (n) from a modified BET (MBET) isotherm equation

 \[W = \frac{RH(1-RH^n)}{[k_1 + k_2 RH(1-RH^n)]} \]

 Model parameters: \(k_1, k_2, n \)

 n = molecular layers in multilayer

 Model fitted separately to wetting and drying curves to obtain “n” and calculate \(H_1 \)

Results
- Pure clays
 MBET-n and SPN methods were unable to capture hysteresis
 Dh method accurately described hysteresis (\(H_2 \))

Soils
- All 3 methods successfully quantified H for both groups of soils

- Clay gradient soils

<table>
<thead>
<tr>
<th>Clay%</th>
<th>12</th>
<th>20</th>
<th>23</th>
<th>35</th>
<th>46</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_1)</td>
<td>0.22</td>
<td>0.25</td>
<td>0.24</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>(H_2)</td>
<td>0.21</td>
<td>0.24</td>
<td>0.23</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>(H_3)</td>
<td>1.22</td>
<td>1.19</td>
<td>1.16</td>
<td>1.33</td>
<td>1.37</td>
</tr>
</tbody>
</table>

- Clay characterised by interlayer hydration exhibit larger degree of hysteresis, e.g. cf. kaolinite and montmorillonite

Conclusions
- All three methods accurately captured hysteresis for soils; but for pure clays, only the Dh method was appropriate
- For pure clays, extent of interlayer hydration determines the degree of hysteresis
- For soils, OM and clay contents showed no clear effect on H

Acknowledgments
The study was financed by the Danish Council for Independent Research | Technology and Production Sciences via the project Water Vapor Sorption Isotherms as Proxy for Soil Surface Properties (DFF -4184-00171)

References