



# The response of UK grown silage corn to polyhalite fertilizer

Lillywhite RD<sup>1</sup>, Chapman S<sup>1</sup>, Pavuluri K<sup>2</sup>, Lewis TD<sup>2</sup> & Meakin R<sup>2</sup>,

<sup>1</sup>Warwick Crop Centre, University of Warwick, Wellesbourne, Warwick, CV35 9EF, UK

<sup>2</sup>Sirius Minerals PLC, Manor Garth, Scarborough, YO11 3TU, UK

### Background

- Polyhalite is a naturally occurring evaporative mineral containing 12% K, 19% S, 12% Ca and 4% Mg;
- The fertilizer value of polyhalite has long been recognized but the discovery of large reserves, circa 220 million tonnes, in the UK has prompted a re-evaluation of its use as a source of plant nutrients;
- The aim of the study was to examine the performance of polyhalite on silage corn with comparison to other commercial potassium fertilizers; sulphate of potash (SOP) and potassium chloride/muriate of potash (MOP).



**Granular polyhalite fertilizer** 

## Field trial

- A replicated field trial was established at Warwick Crop Centre in May 2014 and harvested in October 2014;
- Soil nutrient status at drilling: adequate P (36 mg/l), low K (157 mg/l), adequate Mg (157 mg/l); Ca (1554 mg/l);
- All fertilizer treatments were applied at drilling (May 2014);
- All plots received 100 kg N/ha (as ammonium nitrate) split equally in two equal applications (May and June 2014).

#### **Treatments**

- Control. No K<sub>2</sub>O or SO<sub>3</sub>
- Polyhalite (**PH**) at 75, 150, 225 & 300 kg/ha K<sub>2</sub>O
- Sulphate of potash (**SOP**) at 75, 150, 225 & 300 kg/ha K<sub>2</sub>O
- Potassium chloride (MOP) at 75, 150, 225 & 300 kg/ha K<sub>2</sub>O

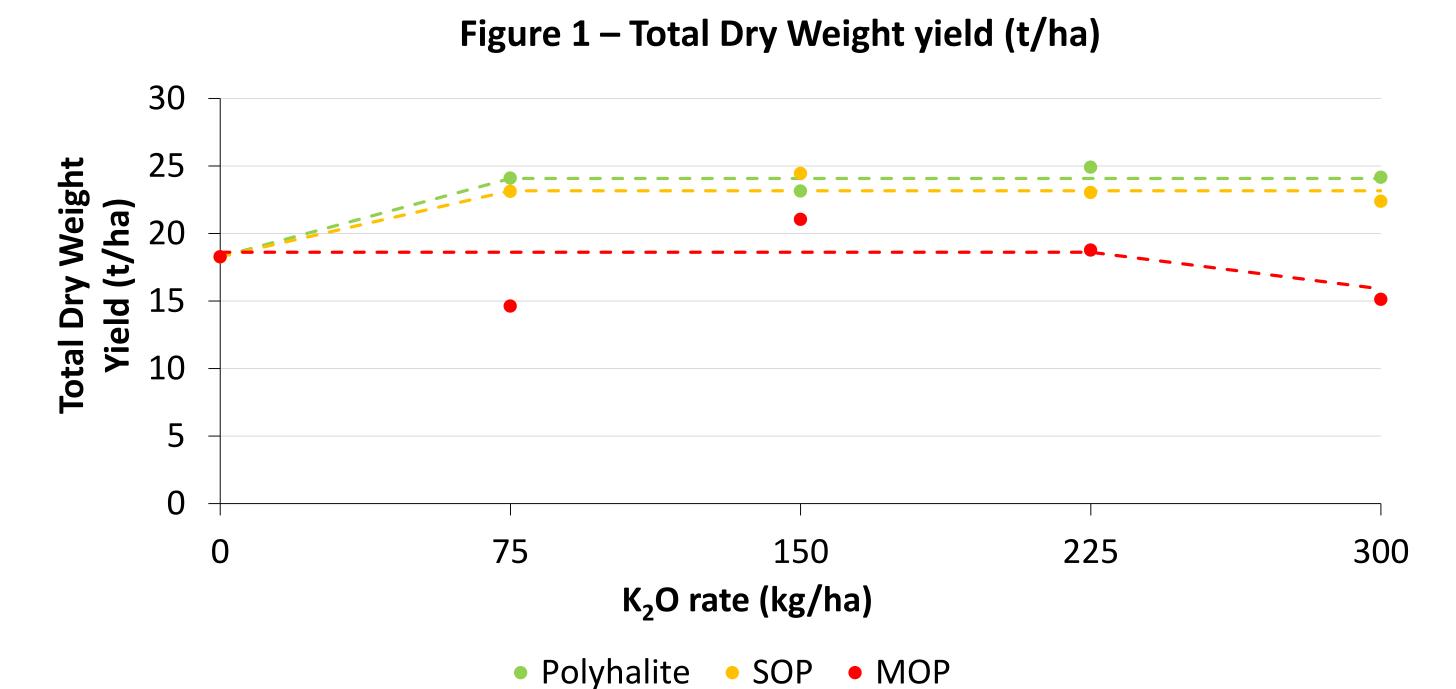



Table 1 – Average Total Dry Weight yield (t/ha) and nutrient uptake (kg/ha) with 95% confidence Tukey results as letters

| Treatment | Total DW<br>yield (t/ha) | K uptake<br>(kg/ha)      | S uptake<br>(kg/ha) | Ca uptake<br>(kg/ha)     | Mg uptake<br>(kg/ha)      |
|-----------|--------------------------|--------------------------|---------------------|--------------------------|---------------------------|
| Control   | 18.3 <sub>a</sub>        | 195 <sub>a</sub>         | 14.3 <sub>ab</sub>  | 35.9 <sub>ab</sub>       | <b>26.1</b> <sub>ab</sub> |
| PH        | <b>24.1</b> <sub>b</sub> | 238 <sub>b</sub>         | 19.9 <sub>b</sub>   | 42.4 <sub>b</sub>        | 35.1 <sub>c</sub>         |
| SOP       | 23.2 <sub>b</sub>        | <b>224</b> <sub>ab</sub> | 18.5 <sub>ab</sub>  | 38.5 <sub>ab</sub>       | 31.8 <sub>bc</sub>        |
| MOP       | 17.4 <sub>a</sub>        | <b>185</b> <sub>a</sub>  | 13.3 <sub>a</sub>   | <b>29.0</b> <sub>a</sub> | <b>24.1</b> <sub>a</sub>  |
| p value   | <0.001                   | 0.024                    | 0.004               | 0.003                    | <0.001                    |

# Results

- PH and SOP significantly out yielded the control and provided comparable crop performance (p<0.001);</li>
- MOP performed poorly. Given its relatively low S uptake, it is likely that availability of S might have been a limiting factor to yield;
- K uptake was significantly different PH, MOP and control but similar to SOP (p = 0.024);
- S uptake for PH and SOP was higher compared to MOP and the control;
- PH recorded the highest Ca and Mg uptake.

## **Conclusions**

- Overall, silage corn responded positively to the application of both K and S;
- Polyhalite is an effective source of both K and S as measured by crop yield and nutrient uptake;
- Polyhalite is comparable in performance to SOP and better than MOP;
- Based on Ca and Mg uptake, there may some synergy between the nutrients in polyhalite that enhances silage corn performance.

This study was funded by Sirius Minerals PLC



