

Mapping QTLs for plant height variation in RIL population derived from cross between Harry x Wesley semi-dwarf wheat lines.

Waseem Hussain^{*1}, P. Stephen Baenziger¹, Mary J. Guttieri¹, Amanda Easterly¹, Jorge P.Venegas¹, Gina Brown Guedira² and Jesse Poland³ ¹Department of Agronomy and Horticulture, University of Nebraska Lincoln. USDAARS, ²North Carolina State University, Raleigh, NC, ³Wheat Genetics Resource Center, Kansas State University, Manhattan, KS.

Background

- > Plant height not only determines plant architecture but also effects grain yield.
- > Plant height is a complex dynamic process controlled by a network of genes and environmental factors.
- > Height variation in lines containing different set of *Rht* genes have been extensively studied.
- > However, height variation in progenies derived from semi-dwarf lines containing same set of *Rht* gene have not been studied.

Objectives

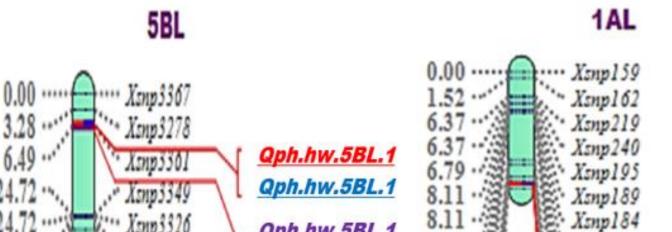
- > Determine the genetic variability of plant height in RIL population derived from semi-dwarf wheat lines containing Rht-B1 gene.
- > Identify QTLs/genes responsible for plant height variation in RIL population of semi-dwarf wheat lines.

Results and Discussion

Phenotypic s	summary	of Pla	nt height	(cm)	evaluated	at	five	
environments								
Environment	n Da							

Environments	Parents		RILs				
	Harry	Wesley	Mean	Min	Max	\mathbf{SD}^{H}	CV^{\ddagger}
Lincoln	102	96.23	104.05	88.00	120.00	7.34	7.21
Mead	104	97.25	104.85	85.00	130.00	7.84	7.48
ClayCenter	96	70.20	83.58	68.58	105.06	6.05	7.25
Grant	86	72.20	87.62	74.20	105	7.54	8.62
Sidney	96	81.60	91.92	70	104	8.19	8.90

\triangleright Performance for plant height differed in all environments.


- \succ Transgressive segregation was observed in both directions.
- > ANOVA (over and within environment) reveals significant

differences in:

- Genotypes, environments, and genotype x environments
- \succ Heritability estimate of pooled data was 86.7%.

Source	Df	Mean Square	F Value	Pr>F
Checks	2	3412	33.82	< 0.00
Lines	203	44.96	12.01	< 0.00
iblock(Environment)	66	18.46	1.75	0.0034
Environment	5	1674.20	263.58	< 0.00
Checks x Environment	10	100.88	9.55	< 0.00
Lines x Environment	1030	17.87	1.69	< 0.00
Residual	132	10.57		

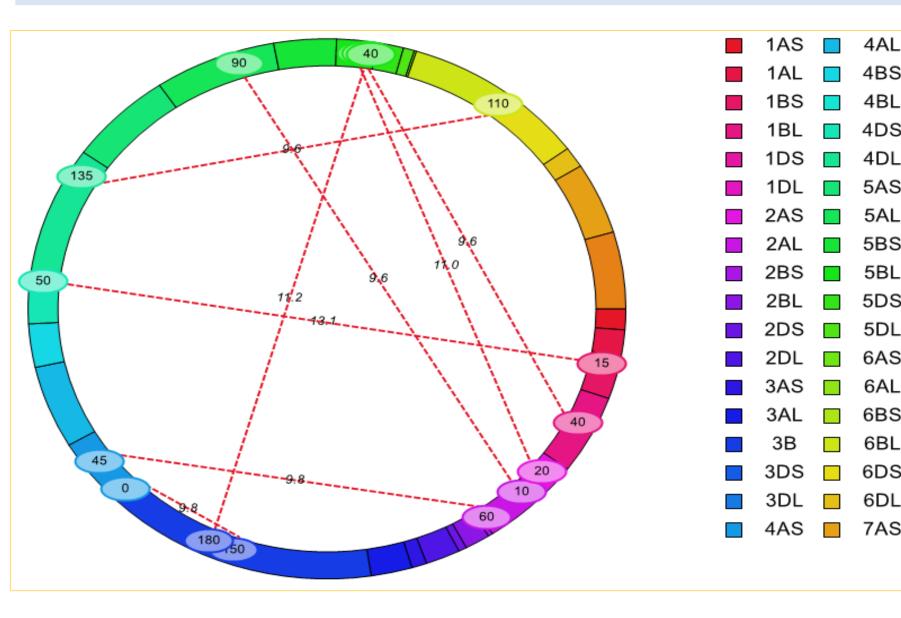
- QTLs affecting height on chromosome 1AL and 5BL at three environments
- -----Mead -----Clay Centre

> Assess QTL main effects, epistasis and their interaction with environment

Materials and Methods

Plant Material

- 204 RILs $(F_6:F_{10})$ obtained from the cross 'Harry x Wesley'.
- 3 checks: Two parents and Freeman
- Harry: Adapted to rained systems
- Wesley: Drought sensitive cultivar
- Both are carriers of *Rht-B1* dwarfing gene.
- Evaluated : Under high to low rainfall sites (Lincoln, Mead, Grant, Sidney and Clay Center)
- > Experimental design
- Augmented Randomized Incomplete Block Design.
- 12 incomplete blocks, 17 lines plus 3 checks randomized per incomplete block.


Genotyping

- Genotyping by sequencing method (Elshire *et al.* 2011).
- TASSEL GBS pipeline was used to call SNPs.
- > Statistical analysis
- ANOVA
- BLUPs
- > Map Construction
- The BIN tool in QTL IciMapping version 4.0

24.72 24.72 25.05 25	<u><u>upn.nw.5BL.1</u></u>	8.60 10.02 10.02 10.02 10.70 10.70 23.24 24.52 27.60 28.54	Xsnp197 Xsnp143 Xsnp126 Xsnp209 Xsnp96 Xsnp172 Xsnp172 Xsnp182 Xsnp182 Xsnp148 Xsnp168 Xsnp165	
		27.60	Xsnp168	<u>Qph.hw.1AL.1</u> Qph.hw.1AL.1

QTLs associated with height in five environments								
QTL	Location	(cM)	Marker interval	LOD Score	PVE (%)	Add		
Qph.hw.3B.1	Sidney	280	Xsnp1806-Xsnp1400	3.95	9.91	-1.97		
Qph.hw.1AL.1	Claycenter	30	Xsnp165-Xsnp86	4.05	9.16	1.69		
Qph.hw.5BL.1	Claycenter	5	Xsnp3278-Xsnp3361	3.28	7.24	-1.49		
Qph.hw.3B.1	Grant	292	Xsnp1737-Xsnp1400	3.95	12.89	-2.22		
Qph.hw.5BL.1	Lincoln	5	Xsnp3278-Xsnp3361	3.97	10.89	-1.93		
Qph.hw.1AL.1	Mead	30	Xsnp165-Xsnp86	3.43	6.74	1.73		
Qph.hw.5BL.1	Mead	5	Xsnp3361-Xsnp3349	6.75	13.68	-2.45		
Qph.hw.7A.1	Mead	66	Xsnp4401-Xsnp4359	3.08	5.76	-1.59		

Highly significant digenetic epistatic QTLs for plant height

▶ 4 distinct QTLs were detected on 1AL, 3B, 5BL and 7A.

- ▶ QTL *Qph.hw.5BL.1* detected in 3 environments (High rainfall).
- ➤ QTL *Qph.hw.3B.1* in two (Low rainfall).
- > Phenotypic variance explained ranged from 5.76 to 12.89%.
- ➤ QTLs *Qph.hw.1AL.1*, *Qph.hw.5BL.1* and *Qph.hw.3B.1* are new and identified first time in semi-dwarf wheat lines. \succ Qph.hw.1AL.1 and Qph.hw.5BL.1 are likely possible candidate genes for plant height manipulation.

 \geq 10 pairs of significant digenetic interactions were identified

across five environments.

 \succ Interactions across chromosomes occurred mostly in the A

and B genome.

4BL

4DL

5AS

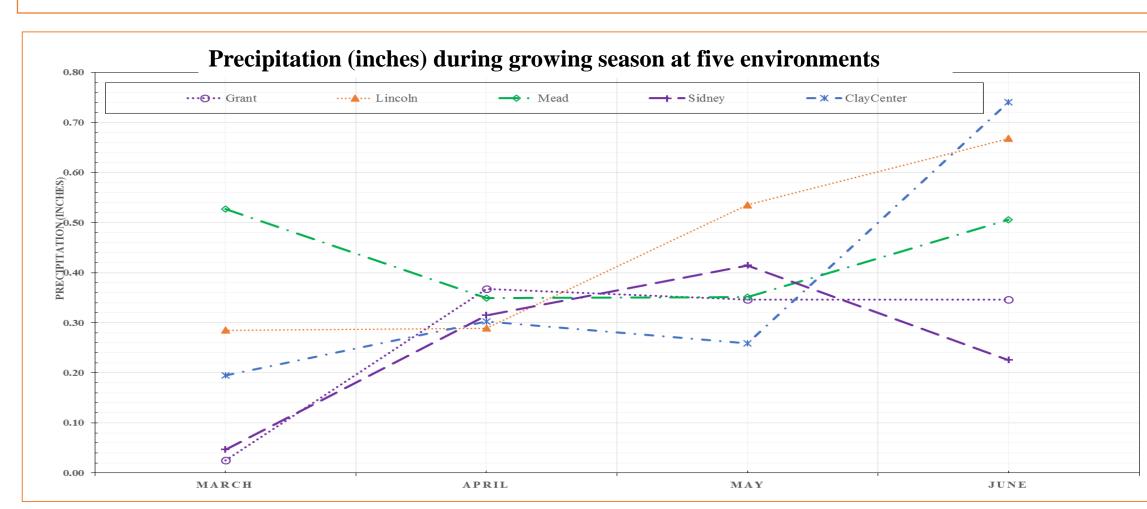
5AL

5BS

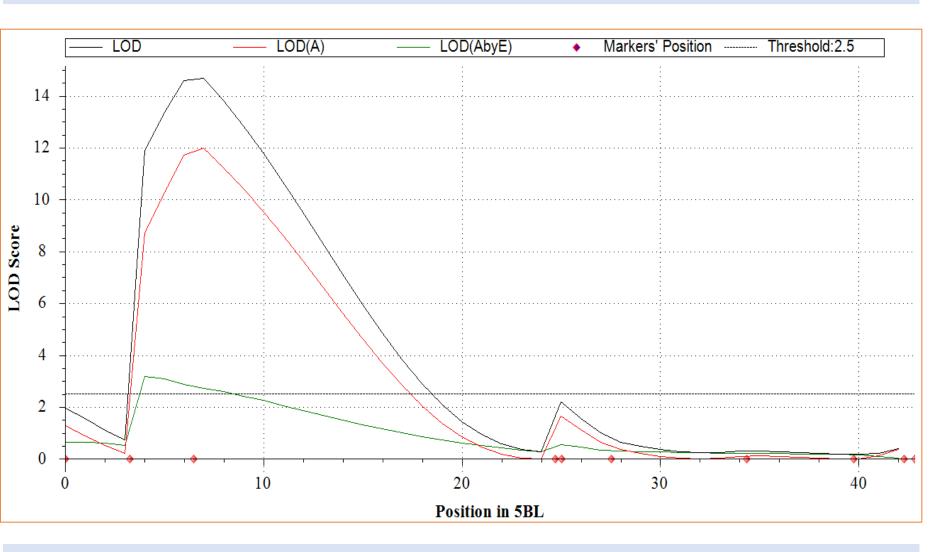
5BL

6AS

6AL


4DS

- > Various authors previously found digenetic interactions for
- wheat plant height in between A and B genome.


- Remove high missing rate markers (>30%) and redundant markers
- Genetic linkage map constructed:
- 440 unique makers spanned 1822 cM in length.
- The average interval length was 4.14 cM.

> QTL mapping

- QTL analysis was performed using IciMapping version 4.0
 - QTL main effects (ICIM-ADD)
 - Digenetic QTL epistasis (ICIM-EPI)
 - QTL × environment interactions (MET)

QTL x environment interactions affecting plant height

References

Elshire et al. (2011) PLoS One 6, e19379.

- Zhang et al. (2008) J Genet Genomic 35, 119-127.
- Meng et al. (2015) The Crop Journal 3, 269-283...

- 6BS 6BL 6DS Significant QTL x environment interactions was evident. 📙 6DL 7AS
 - > Few QTLs appeared to be environment-specific.
 - > Phenotypic variance explained by QTL x environment interaction was small ranged from 2.76 to 0.02%.

Conclusions

> Presence of genetic variability in plant height in progeny of cross between semi-dwarf parents. > Identified QTLs may be utilized to modify the plant height in specific crosses. Taller semi-dwarfs under drought and shorter semi-dwarfs under rainfall are desirable.

Future work

> Evaluation of the lines under low and high rainfall environments to detect the presence of identified QTLs.

 \succ Comparative analysis of the identified QTLs.