

Agriculture et Agroalimentaire Canada Agriculture and Agri-Food Canada

Marie-Noëlle Thivierge¹, Guillaume Jégo¹, Gilles Bélanger¹, Annick Bertrand¹, Gaëtan F. Tremblay¹, C. Alan Rotz², Budong Qian¹

Introduction

Studies of climate change effects on forage crops have focused on individual forage species even though legume-grass mixtures are predominant on dairy farms in northern areas of North America.

Our objective was to assess the effect of future climate change and elevated CO₂ concentration on yield and nutritive value of alfalfa (Medicago sativa L.) and **timothy** (*Phleum pratense* L.), grown in a **mixture**, with or without the implementation of an adaptation strategy (modified harvest schedule including additional cuts).

Materials and methods

- The Integrated Farm System Model (IFSM; Rotz et al., 2014): a process-based farm model
- Model calibrated for timothy and alfalfa under current climate conditions in Canada (Jégo et al., 2015)
- Simulation of growth of an alfalfa-timothy mixture on dairy farms in eastern Canada:
 - for two contrasting climate areas : a warmer and a colder area
 - > with two representative concentration pathways of greenhouse gas: RCP 4.5 and 8.5
 - for three periods: reference (ref.), near future (NF), and distant future (DF)
- A 300-yr series of synthetic daily weather data was generated for each scenario using AAFC-WG, a stochastic weather generator (Hayhoe, 2000; Qian et al., 2004)

Projected changes in [CO₂] and climate conditions relative to the reference period in two contrasting climate areas in the province of Québec (for the growing season, 1 Apr. to 31 Oct.)

	Warme	• Warmer area		 Colder area 	
Reference (<mark>ref</mark> ., 1971 to 2000)	346 pp	346 ppm CO_2		346 ppm CO ₂	
[Average temperature (°C cumulated growing degree), 14. e-days 2008	0°C-d	1393°C-d		
(GDD above 5°C, °C-d), a cumulated precipitation (n	ind nm)] 625	625 mm		552 mm	
Sce	NE 4.5	NE 8.5	NE 4.5	NE 8.5	
Near future (NF, 2020 to 2049) (Differences with reference period)	+101 ppm CO ₂ +2.3°C +438°C-d +49 mm	+123 ppm CO ₂ +2.4°C +475°C-d +55 mm	+101 ppm CO ₂ +2.2°C +387°C-d +61 mm	+123 ppm CO ₂ +2.4°C +426°C-d +43 mm	
Sce	narios				
Distant future (DF, 2050 to 2079) (Differences with reference period)	DF 4.5 +168 ppm CO ₂ +3.6°C +699°C-d +39 mm	DF 8.5 +293 ppm CO ₂ +5.1°C +1029°C-d +41 mm	DF 4.5 +168 ppm CO ₂ +3.4°C +618°C-d +59 mm	DF 8.5 +293 ppm CO ₂ +5.0°C +939°C-d +72 mm	

• Forage mixture yield and nutritive value were projected:

With adaptation
- Harvest dates base
➢ 450°C-d (5°C
520°C-d betw
\succ ≥ 500°C-d af
- 1 or 2 additional ha

Projecting yield and nutritive value of an alfalfa-timothy mixture under climate change

¹Agriculture and Agri-Food Canada, Quebec and Ottawa Research Centers, Canada ² USDA Agricultural Research Service, University Park, PA, USA

Province of Québec

Canada

ed on GDD criteria: C basis) before 1st cut ween cuts fter last cut arvests

Annual dry matter yield (kg DM ha⁻¹)

Without adaptation Green bars

Ref.

drastic scenario in the warmer area (DF 8.5, -10%).

NF8.5

DF4.5 DF8.5

- GDD accumulation between cuts.
- With adaptation Blue bars
 - unchanged in scenario DF 8.5 in the warmer area.

Acknowledgements

This study was funded by the Dairy Research Cluster as part of the Canadian Agri-Science Clusters Initiative of Agriculture and Agri-Food Canada.

References

Jégo et al., 2015. Can. J. Plant Sci. 95:745–757. Hayhoe, 2000. Clim. Res. 14:75–87. Qian et al., 2004. Clim. Res. 26:175–191. Rotz et al., 2014. The integrated farm system model, reference manual version 4.1. In. Agricultural Research Service, United States Department of Agriculture.

Results and discussion

Temperature and water stress indices

> Yield of forage summer regrowth is expected to decrease due to temperature and water stresses.

Temperature stress index (0 to 1.0)	Value
Optimum photosynthesis temperature (20°C alfalfa; 13.5°C timothy)	1.0 (no stress)
Below min. photosynthesis temp. (5°C alfalfa; 0°C timothy) or above max. photosynthesis temp. (35°C)	0 (max. stress)
Water stress index (0 to 1.0)	Value
Plant available water = 100% of critical soil moisture content	1.0 (no stress)
Plant available water = 0% of critical soil moisture content	0 (max. stress)

Projected dry matter (DM) yield and nutritive value of the alfalfa-timothy mixture

• Annual DM yield is expected to increase (+7 to +22%) because of an increase in the first cut yield, except for the more

Concentration of the total digestible nutrients in the forage mixture is expected to decrease (-3 to -10%) because of higher

• Annual DM yield is expected to increase in both areas (+6 to +33%), mostly because of additional cuts, and to remain

• No decrease in the total digestible nutrients concentration is expected, due to the increased proportion of alfalfa in the mixture. > Next steps: farm level analysis of the impact of climate change and evaluation of other forage mixtures.

Canada