

A New and More Intuitive Structure for the New York Phosphorus Index Sebastian Cela, Quirine M. Ketterings*, Karl J. Czymmek, and Stephen Crittenden

Nutrient Management Spear Program, Department of Animal Science, Cornell University, Ithaca, NY. *Contact email: qmk2@cornell.edu

INTRODUCTION

Phosphorus indices (PIs) are being evaluated across the US for their ability to rank fields based on their relative P loss risk. Feedback from nutrient management planners and analyses of field data suggested opportunities for improvement to the New York Phosphorus Index (NY PI). Here we propose an alternative structure for the NY PI.

FEEDBACK FROM NEW YORK NUTRIENT MANAGEMENT PLANNERS

Certified nutrient management planners (CNMP) in New York were surveyed to obtain their recommendations for improvements to the NY PI¹. Planners were positive about the current NY PI but suggested:

MODIFICATIONS TO NEW YORK PHOSPHORUS INDEX PARAMETERS

Table 3. Coefficients proposed for transport factor levels.

Transport Factor	Level	Coefficient
Flow distance to	> 300	6
water body (FD)	100 to 300	9
(feet)	< 100	12
Flooding	Never	0
frequency	Occasional	2
(FF)	Frequent	5
Soil erosion	< 1	0
(ton/acre)	1 to 3	1
(SE)	3 to 5	3
	> 5	5
Soil drainage	Well	0
class	Moderately well	2
(DC)	Somewhat poor	4
	Poor	8
Untreated	No	0
concentrated flow (CF)	Yes	4
Subsurface	Random	1
drainage (SD)	Pattern	2
Vegetated	Absent	0
buffer (VB)	Present	-4

- improvements to more strongly encourage manure incorporation and injection and discourage application of manure under conditions of high potential P loss.
- the addition of cover crop use to the list of **best management practices (BMPs)** (Table 1).

Table 1. Survey results of NY nutrient management planners.

NY PI should encourage		NY PI should discourage		
Manure applications	% of planners	Manure applications	% of planners	
with incorporation	58	to frozen or saturated soils	61	
to fields without connectivity	28	to fields close to streams	44	
at lower rates	19	without incorporation	36	
Credit BMPs		to fields with steep slopes	19	
cover crops	39	to fields without crops 14		
setbacks and buffers	36	at high rates	22	

PROPOSAL FOR A REVISED NEW YORK PHOSPHORUS INDEX STRUCTURE

A modified structure of the NY PI is proposed (Table 2). The new NY PI:

- uses soil test P (STP) as an application cutoff (40 lb Morgan P/acre fertilizer application cutoff for agronomic response).
- determines the relative inherent P transport risk of each field based on field landscape and soil characteristics and assuming "worst case scenario" for manure addition.

BEST MANAGEMENT PRACTISES

Best management practices (Table 4) are designed to:

- motivate farmers to implement practices that reduce P loss.
- reduce a field's inherent transport NY PI score and hence lower risk of P loss.
- include manure application methods, ground cover, and setbacks.

Table 4. Coefficients proposed for best management practices.

- determines annual maximum P application rate based on the inherent transport risk (N based, P based, no application).
- incentivizes implementation of BMPs to reduce a field's NY PI score.

Table 2. Annual rate of manure or fertilizer that can be applied based on the field's inherent P transport risk and soil test P levels.

		Morgan soil test P (lb P/acre)		/acre)	
Inherent P transport risk	New NY PI score	< 40	40 to y	> y	
Low	< 50	N based	N based	Zero	
Medium	50 to 74	N based	P based	Zero	
High	75 to 99	P based	P based	Zero	
Very high	≥ 100	Zero	Zero	Zero	
Concentrated Animal Feeding Operation (CAFO) permit and other guidelines will regulate manure applications					

to frozen, snow covered, and saturated fields.

MODIFICATIONS TO NEW YORK PHOSPHORUS INDEX PARAMETERS

• Transport factors are as in the current NY PI: flow distance (FD), flooding frequency (FF),

Method of application	Coefficient
Surface spread without setback	1.0
Surface spread with 100-foot setback	0.8
Incorporation (within 24 hours and 15-foot setback)	0.6
Injection (with 15-foot setback)	0.5
Ground cover	
Row crop stubble outside 1-2 weeks of planting	1.0
Row crop stubble within 1-2 weeks of planting	0.8
Dormant sod or cover crop after corn harvest	0.8
Growing sod or row crop	0.6

NEXT STEPS

A review process is ongoing with NY and PA partners. Feedback from stakeholders including planners, state government and NRCS representatives in NY, and PA partners in the USDA-CIG Chesapeake Bay Watershed P evaluation project has been and will continue to be incorporated in the coming months. A database of more than 33 000 real fields in New York with PI data was collected and will be used to evaluate the potential impacts of any modifications to the NY PI. In addition, modeling efforts are underway to evaluate relative runoff risk of the various manure management practices of relevance to dairies in NY and PA.

soil erosion (SE), soil drainage class (DC), and untreated concentrated flow (CF) (Table 3).
Two additional transport factors were added subsurface drainage (SD) and vegetated buffers (VB) (Table 3, in red).

 Best management practices, identified as desirable and effective in reducing runoff risk, are "credit factors" that lower the PI score and might, as a result, allow for manure application where otherwise not possible or only possible a P-based rates.

• The inherent transport risk is calculated as:

Particulate PI = $(FD + FF + SE + CF + VB) \times 10 \times BMP$ Dissolved PI = $(FD + FF + DC + CF + SD + VB) \times 10 \times BMP$

ACKNOWLEDGEMENTS AND CONTACT INFORMATION

We thank the NY CNMP planners who responded with feedback and data. Funding came from USDA-Conservation Innovation Grant 'Refining and Harmonizing PIs in the Chesapeake Bay Region to Improve Critical Source Area Identification and to Address Nutrient Management Priorities' (69-3A75-12-226, 4782-CU-USDA-2226).

¹Cela, S., Q. Ketterings, K. Czymmek, J. Weld, D. Beegle, and P. Kleinman. Nutrient management planners' **A**ffective feedback on New York and Pennsylvania phosphorus indices. Journal of Soil Water Conservation (in press).