IDENTIFICATION OF TWO NEW QTL FOR FHB RESISTANCE IN A HARD RED SPRING WHEAT CULTIVAR 'PARSHALL'

Ahmed EIFatih EIDoliefy ${ }^{\mathbf{1}}$, Sujan Mamidi ${ }^{\mathbf{1}}$, Ajay Kumar ${ }^{\mathbf{1}}$, James A. Anderson ${ }^{\mathbf{2}}$, Karl D. Glover ${ }^{\mathbf{3}}$, Elias Elias ${ }^{\mathbf{1}}$, Shiaoman Chao ${ }^{\mathbf{4}}$, Mohammed S. Alamri ${ }^{\mathbf{5}}$ and Mohamed Mergoum ${ }^{\mathbf{1}}$
NDSU NORTH DAKOTA ${ }^{\text {STATE }}$ NIVERSITY ${ }^{\text {idepartment of Plant Sciences, North Dakota State University, Fargo, ND; }{ }^{2} \text { Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN; }{ }^{3} \text { Department of Plant Sciences, South Dakota State University, }}$

Abstract

The intensive use of the Chinese Sumai3 as the major resistance source for FHB has narrowed the variation of the aim of our study was to investigate new genetic regions in the North Dakota (ND) spring wheat cultivars. A population with 110 RIL, called (PR), was generated from the cross between 'Parshall' and 'Reeder', a moderate resistant and a susceptible cultivars released by the ND State University, respectively. PR population was evaluated for FHB resistance for the three locations in the USA In addition, two years (2011-2012) of greenhouse experiments were performed to validate field data. Several FHB resistance traits including incidence (INC), severity (SEV), FHB-index (NDX), deoxynevalonel (DON), and FHB-damaged kernel (FDK), and heading date (HD) were assessed. Our results revealed that out of 65 QTL; 39 QTL had significant major effect. Three QTL (QFHB.2AL, QFHB.3AL1 and QFHB.3BL3) were stable across at least three year \times location environments. Likewise, four QTL (QFHB.4AL2.a, QHD.4AL2.b, QFHB.4BS and QFHB.6BL) were stable and had major effect across at least four environments. Most importantly, te QFHB.4BL2.a QTL was stable under nine environments controlling four different FHB-related traits including SEV and FDK. Our data also demonstrated that Parshall acquired novel may contain allelic forms that help increase/widen and bridge the narrow allelic variation existed in FHB resistance traits. These alleles could be implemented in national and international genome wide selection (GWS) and molecular assisted breeding (MAB) programs. Finally, Parshall pyramids many genomic regions that were associated with high-yield and quality end-uses, and other agronomic, including drought tolerance that can improve wheat production

FHB Screening

Population and Phenotyping

110 (PR) RILS developed from Parshall (FHB-resistant) \times Reed (FHB-susceptible).
FHB Incident (INC): percentage of infected spikes per entry \rightarrow for 4 -environments.
FHB Severity (SEV): percentage of diseased spikelets on the infected spick (Disease spread) \rightarrow for 6 -environments.
FHB DON Analysis: DON concentration is run by gas
chromatography and/or mass spectroscopy methods \rightarrow for 3chromatography and/or mass spectroscopy methods \rightarrow for 3 FHB FDK: Percent of damaged kernels based on 200 kernels \rightarrow for 2-environments
Heading dates (HD): Number of days, from planting until the growth stage Feekes $10.5 \rightarrow$ for 5 -environments.

Mapping and QTL Analysis

PR population was genotyped using 9K-SNP-Illumina (USDA, wheat genome enhancement lab, Fargo,
with DArT (hp:/Mwn.ic
81 polymorphic combined SNP \& DArT markers mapped to 44 to 19 chromosomes (Table 2). Total genetic distance $=597.1 \mathrm{cM}(2.35 \mathrm{cM} /$ marker loci) .

QTL	TRT	LOC	MRK	Pos	CI	Add	LOD*	R\%\%	Perm-L0
QFDK.1AL	FDK	S10	wPt-6853-wPt-0432	3.0-3.5	3.1-6.7	4.3	3.3**	13	2.5-3.6
QFHB.1AL	INC,FDK	P11,512	wPt-4065-wPt-7215	17.5-18.0	6.7-18.4	1.2	3.1***	9.0-12.0	2.2-3.5
Q.SEV.1BS.a	SEV	612	wPt-4366-wPt-0328	5.5	3.1-6.9	-3.8	2.6*	10	2.6-3.4
Q.SEV.18S.b	SEV	612	wPt-3465-wPt-2762	8.0	7.1-9.5	7.9	2.9*	12	2.6-3.4
QFHB.2AL	FDK, HD	S10,S12,NDH	wPt-665330-wsnp_Ex_6660_11526924	0.0-14.5	0.0-24.7	$\pm 0.4-4.7$	2.6-4.2***	10.2-16.0	2.2-3.6
QINC.2As.a	INC	M10	wsnp_Ex_c11560_18632777-wPt-4533	1.5	0.9-3.2	-3.7	2.5*	10	2.2-3.0
QINC.2As.b	INC	M10	wPt-4533-tPt-1041	6.0	3.2-12.3	14.8	5.8****	21.8	2.2-3.0
Q.FHB.3AL1	SEV,FDK	P11,G12,GHS	wsnp_Ex_rep_c67349_65914945-wsnp_RFL_Contig4273_4946890	0.0-0.5	0.0-1.0	2.5-4.1	2.2-4.5***	9.0-17.0	2.5-3.6
QFHB.3AL2	sev, ${ }^{\text {don }}$	612,510	wPt-744743-wPt-9154	0.0-1.5	0.0-3.2	-0.5-4.0	3.0**	12	2.5-3.5
QFHB.3AL3	SEv, fok	611,510	wPt-5173-wPt-9049	11.5-14.0	8.8-14.4	$\pm 3.3-4.0$	2.8*	11	2.5-3.6
QSEV.3AL4	SEv	GH	wsnp_Ex_C26887_36107413-wsnp_Ex_c4923_8767234	14.0	0.0-20.5	-3.8	3.4**	13	2.5-3.6
QFDK.3BL1	fDK	S10	tPt-1759-wPt-10130	3.0	2.8-3.3	-2.7-3.6	2.4-4.1***	10-15.7	2.5-3.6
qdon.3bl2	Don	P11	wPt-4933-wPt-667746	1.0	0.6-3.8	-0.21	2.7**	11	2.2-3.1
QFDK.3BL2	FDK	612	wPt-7037-wPt-2439	6.0	5.4-6.3	-4.4	3.0**	12	2.6-3.6
аFHB.3BL2	sev,ndx	C11	WPt-0401-wPt-5295	9.0	8.9-9.4	1.1	2.9**	11	2.5-3.3
QFDK.звLз	FDK	S10,GH	wPt-3327-wsnp_Ex_6445_11200449	9.0-10.0	0.0-10.8	$\pm 2.4-5.4$	2.0-3.2**	8.0-13.0	2.5-3.6
QFHB.3BL3	INC,SEV,FDK	P10,Al,S10	wsnp_JD_c6974_8084752-wsnp_Ku_c15149_23666345	19.0-22.5	14.1-25.2	1.2-5.2	2.3-3.6**	9.0-14.0	2.4-3.6
QFHB.3BS1	sev,hD	P12,G11	wsnp_Ex_c7108_12222660-wsnp_Ex_c2325_4355706	1.5-3.0	0.0-3.0	± 3.6	3.4**	13.3	2.5-3.6
QFDK.3BS2	FDK	611,GH	wsnp_EX_116919_25506076-wPt-742337	10.0	9.4-12.3	3.3-4.02	2.0-3.1**	8.0-12.1	2.6-3.7
Q.SEV.3DS	SEV	P10	wPt-741536-wPt-742314	0.0	0.0-0.5	2.9	2.9*	12	2.5-3.3
afhb.4AL2.a	Inc,sev,ndx	P12,S10,A1,M10,AN	wsnp_Ku_rep_c68565_67614479-wsnp_Ku_c45197_52288542	0.0-1.5	0.0-4.1	$\pm 1.5-4.1$	2.8-6.1***	11.0-23.0	2.3-3.6
QHD.4AL2.b	HD	C11,L11,P12,M10,NDH	wsnp_Ku_c45197_52288542-wPt-7427	4.5-10.0	4.1-10.4	0.4-0.9	2.2-4.0***	9.0-15.4	2.5-4.0
QFHB.4BL2.a	SEv,NDX,FDK,H	P10,C11,L11,M10,S11,S12 Fields, AN, NDH	wPt-6149-wPt-7569	6.0-18.5	0.0-20.9	0.5-6.7	2.2-8.8***	9.0-31.0	2.2-4.0
QFHB.4BL2.b	FDK,don	P11,S10	wsnp_CAP12_c1101_569783-wsnp_RFL_Contig4416_5179910	21.0-22.0	20.9-22.8	0.5-11.8	3.0-3.6**	12.7-14.2	2.2-3.6
QSEV.4BL3	SEV	612	wsnp_Ku_6210_9290700-wsnp_Ex_C4685_8377545	21.5	0.0-26.1	-6.1	4.0****	15	2.6-3.4
qFHB.4BS	DON,HD	P10,M10,NDH,G11,S11	wsnp_Ex_c13357_21054802-wsnp_Ex_66739_11646407	2.0-18.5	0.0-18.7	-0.4-0.7	2.2-6.6.2**	9.1-23.0	2.4-3.7
QDon.5AL	don	S11	wsnp_Ra_rep_c69221_66574260-wsnp_Ex_rep_c70343_69286072	15.5	0.0-15.7	-0.6	4.9****	19	2.5-3.4
QHD.5AL	HD	C11	wsnp_Ex_C4666_8349206-wsn__Ku_c30743_40542247	16.5	15.7-22.7	-0.8	3.0**	11.7	2.6-4.0
Q.FH.5AL	sev, ${ }^{\text {d }}$, don	S12,611	wsnp_JD_c1796_2496653-wsnp_Ex_C19647_28632894	27.5-31.5	22.7-31.5	$\pm 0.5-1.6$	2.1-3.7***	8.7-14.4	2.5-3.6
QFDK.6AL	fDK	S10	wsnp_RFL_Contig420_4824600-wsnp_Ex_C42447_49025091	2.0	1.0-2.5	4.5	3.7****	14.4	2.6-3.6
qdon.gAs	DON	sD	wPt-731413-wPt-733115	7.5	2.7-11.9	0.4	3.0**	12	2.5-3.5
аFнB.6Bc	DON, HD	SD,ND	wsnp_Ku_c7002_12116034-wPt-6247	3.5-8.0	0.0-12.7	0.4	2.2-2.8*	9.0-11.0	2.5-3.5
ағнв.6BL	DON,HD	S11,P10,M10,C11	wPt-743231-wPt-1048	19-21.5	16.0-21.9	0.8-0.43	2.7-3.6***	10.8-14.1	2.4-4.0
QFHB.6BS1	sev,NDX	P12	wPt-7203-wsnp_CAP12_c1388_706924	5.5-6.0	2.0-6.6	-4.1	2.2	9	2.5-3.8
Q.FHB.6BS2	sev,NDX	P11	wPt-743078-wPt-7576	1.5	0.0-4.5	-2.8	4.1.***	16	2.5-3.4
Q.FHB.7AL1	SEv, HD	P10,M10	wPt-7785-wPt-1928	0.0-0.5	0.0-0.3	2.2	2.7*	8.0-11.0	2.5-3.7
QFHB.7AL2	sev,NDX	S12	wsnp_RFL_Contig2136_1423367-wPt-664237	0.0	0.0-9.6	-1.5	3.0**	12	2.5-3.6
QFDK.7AL3	FDK	612	wPt-744715-wPt-744937	15.5	0.0-15.8	-5.8	4.3****	16.3	2.6-3.6
QINC.7AL4	INC	P11	wPt-4721-wPt-0275	02.5	0.0-21.3	-5.6	5.5****	20.7	2.5-3.5

Results

QTL analysis for FHB traits and heading dates (Table 1)

- Composite interval mapping (CIM) using QTL CARTOGRAPHER identified $=6$ for INC (type 1); 18 for SEV (type 2); 6 for NDX; 10 for DON (type 3); 14 for FDK (type 4), and 11 QTL for HD.
The PV explained by individual QTL $=09-21.8 \%$ for $\operatorname{INC} ; 08-25 \%$ for SEV; 10.6-30.9\% for NDX: 08-23\% for DON; 08-16.3\% for FDK; and 09-18.8\% for HD. All QTL had significan major effect (PV>10\%) except for QFHB.6BS1.

Four major consistent QTL (4AL2, 4BL2, 4BS, and 6BL) for INC,SEV,NDX,DON,FDK and HD were detected in more than 5 environments explaining 09 to $\mathbf{3 1 \%}$ of PV.
The QTL (QFHB.4BL2.a) for SEV,NDX,FDK, and HD was detected in 9 environments out of total 13 combined years/locations environments.

Acknowledgement and Disclaimer

This material is based upon work supported by the U.S. Department of Agriculture, under Agreement No.59-0206-9-066. This is a cooperative project with the U.S. Wheat \& Barley Scab Initiative. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) an do not necessarily reflect the view of the U.S. Department of Agriculture.

Conclusions

We identified major and consistent QTL on 4A, 4 B (Fig. 1) and 6B for FHB resistance; given that, Parshall has no Sumai3 background.
Markers associated to the 4BL QTL (Parshall), could be useful for marker-assisted selection/introgression of new resistant alleles into other wheat germplasm.
Comparison of map locations, of identified QTL, assigned several genomic regions conferring common loci for different traits.
Genomic QTL validation revealed that Parshall may combine QTL for resistance of FHB, salinity, drought, kernel shattering, plus yield and quality traits.
 Fig. 1. Chromosomal map for major and consistent QTL identified on
4AL2 and $4 \mathrm{BLL2}$ in (PR) population. (aTL intervals shown as (lines); QTL
positions shown as (Triangles); QTL for INC, SEV, NDX, DON, FDK, and HD

