Calcium Ammonium Nitrate, Urea or Stabilized Urea: The Impact on Yield and Apparent Fertilizer Recovery in Intensive Grassland.

<u>Mary Harty^{1,3}</u>, Patrick J Forrestal¹, Gary J Lanigan¹, Gavin McNeill², Rachael Carolan², Karen McGeough², Ronnie Laughlin², Deirdre Hennessy⁴, Chris Elliott³, Catherine Watson^{2,3} and Karl G Richards¹, (1) Environment, Soils and Land-Use, Teagasc, Wexford, Ireland (2) Agri-Food and Biosciences Institute (AFBI), Belfast BT9 5PX, Northern Ireland; (3)Institute for Global Food Security, Queens University Belfast, Belfast, Northern Ireland (4) Teagasc, Moorepark Animal & Grassland Research and Innovation Centre, Fermoy, Co. Cork, Ireland

Introduction

- 38% of national agricultural emissions come from N fertilizer applications in the form of nitrous oxide (N_2O)
- Calcium ammonium nitrate (CAN) is the most common form of straight nitrogen (N) used in Ireland. CAN is at risk of loss as N_2O though denitrification in wet conditions.
- An alternative N source is Urea which is cheaper per unit N.
- However, Urea can contribute to increased ammonia losses.
- N stabilizer technologies used with Urea fertilizers could maintain or improve yields while simultaneously reducing environmental N losses.

Results

Siteyear	C.A.N.	Urea	Urea n-BTPT	Urea DCD	Urea DCD n-BTPT
			%		
Hillsborough 2013	48	51	55	39	54
ohnstown 2013	74	57	66	51	65
Moorepark 2013	8 7	79	96	72	75
Hillsborough 2014	70	72	72	73	70
ohnstown 2014	72	64	71	51	64
Moorepark 2014	95	103	91	86	89
Average	74	71	75	62	70

Yield

No single formulation generated consistently highest grass DM yield across all site years (Figure 2) but Urea + DCD generated significantly lower DM yield than CAN in three site years.

Apparent Fertilizer Recovery (AFR)

- Urea + n-BTPT produced the highest mean AFR (Table 1).
- Urea and Urea + DCD fertilizer produced lowest mean AFR (Table 1).

Summary

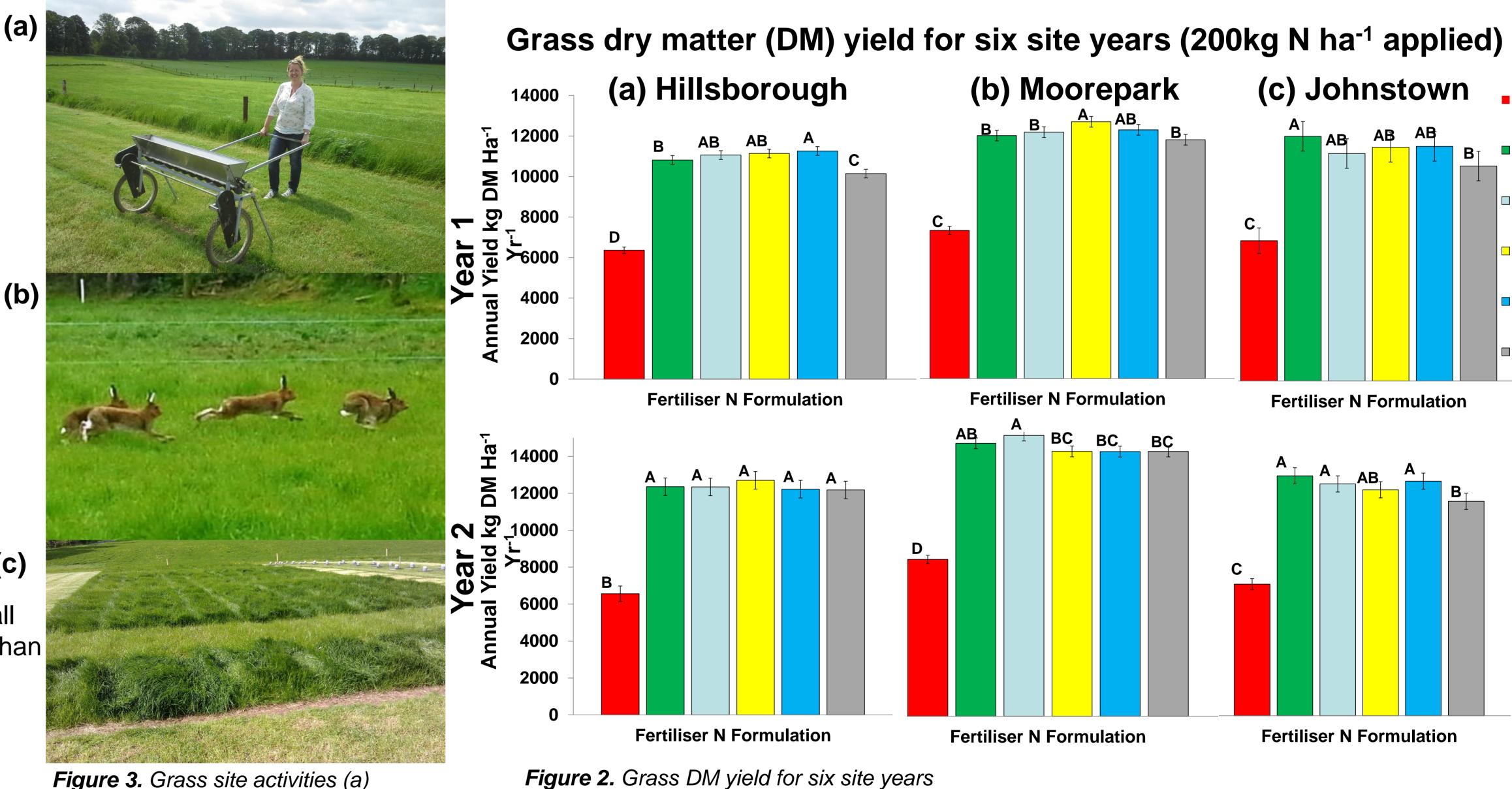

- lower yields than CAN in three site years
- showed a trend for the lowest AFR in five of six site years (Table 1)
- at levels comparable to CAN in intensive grassland

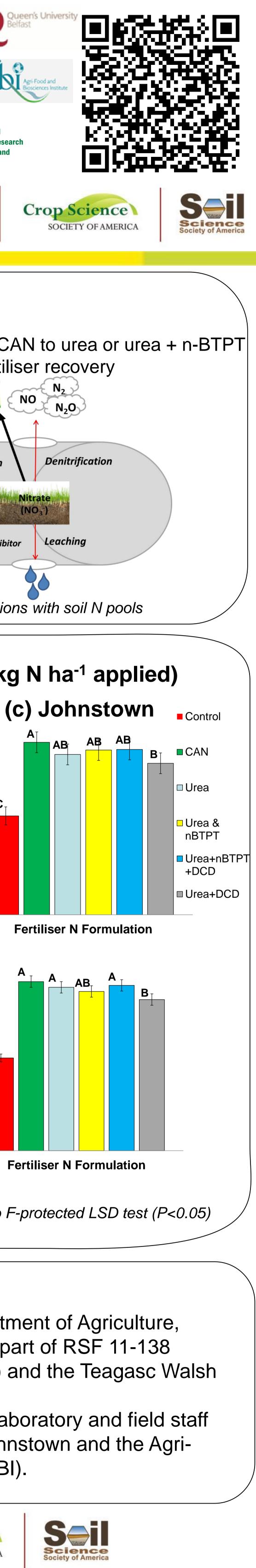
Figure 3. Grass site activities (a) applying basal dressing (b) site visitors and (c) grass harvest

Figure 2. Grass DM yield for six site years *Different letters within graphs represent significant differences according to F-protected LSD test (P<0.05)

• Urea treatments performed as well as CAN did not impact yield except Urea+DCD which generated significantly

• On average Urea treatments generated similar apparent fertilizer recovery to CAN apart from Urea+ DCD which

• Results indicate that the use of specific stabilized urea fertilizers also maintains yield and apparent fertilizer recovery



Acknowledgements

This work was funded by the Department of Agriculture, Food and the Marine, Research as part of RSF 11-138 (SUDEN) and RSF 10-716 (AGRI-I) and the Teagasc Walsh Fellowship Fund.

We would like to acknowledge the laboratory and field staff at Teagasc Moorepark, Teagasc Johnstown and the Agri-Food and Biosciences Institute (AFBI).

