Characterization of spatiotemporal variability of soil hydraulic properties under drainage and recharge cycles by X-ray tomography.

- Yann Periard (1), Silvio José Gumiere (1), Alain N. Rousseau (2), Jonathan A. Lafond (1) and Jean Caron (1) yann.periard-larrivee.1@ulaval.ca
- (1) Université Laval, Faculté des sciences de l'agriculture et de l'alimentation, Département des sols et de génie agroalimentaire, Québec, Canada (2) Institut national de la recherche scientifique : Centre Eau, Terre et Environnement, Québec, QC

Session: Environmental Soil Physics and Hydrology Student Competition: Lightning Orals with Posters

Poster Number 1429

- under the influence of irrigation and water table control.
- > Reduction of drainage capacity
- Natural consolidation (drainage and recharge cycles), filtration and clogging soil pores by colloidal particle

Anthropic Genesis

Consolidation & Migration

- ▶ -5 cm at the bottom during drainage and +76 cm during recharge.
- Simulation of precipitation (9 cm of pressure) head at the top)
- > 2 valves, 1 Mariotte bottle 18.2 l, 1 Mariotte bottle 1000 ml
- > 10 tensiometers and 7 lysimeters
- Measurements of inflow and outflow

Tomographic analysis

- > The study was realized at *Laboratoire* Multidisplinaire de Scanographie du Québec de *l'INRS*.
- Medical CT scan of type Somatum Volume Access (Siemens, Oakville, ON, CA).
- Energy level of 140, 120, 100 et 80 keV
- ▶ Resolution of a voxel was 0.1x0.1x0.6 mm

Determination of the concentration Beer-Lambert law

 $HU = 1000(\mu - \mu_w)/(\mu_w - \mu_a)$ $I = I_0 \exp(-\mu x)$

Figure 1. Experimental setup

For Tomography imagery allows to study a number of physical processes occurring in soils (Wildenschild and Sheppard, 2013).

Objective

> The main objective of this work is to analyze the temporal evolution of hydrodynamic properties of a sandy soil during repeated drainage and recharge cycles using a medical CT-scan.

- Discrimination of phases by Procedure proposed by Rogasik *et al.* (1999)
- **ZrO**₂ concentration Sand concentration $C_{s} = \frac{Hu_{1}Hu_{Zr2} - Hu_{2}Hu_{Zr1}}{Hu_{Zr1}}$ $Hu_1Hu_{m2} - Hu_2Hu_{m1}$ $C_{Zr} = \frac{Hu_{1} - Hu_{m2}}{Hu_{Zr1}Hu_{m2} - Hu_{Zr2}Hu_{m1}}$ $Hu_{7r1}Hu_{m2} - Hu_{7r2}Hu_{m1}$
- **Porosity** $\phi = 1 (C_s + C_{Zr})$

Soil hydraulic properties

- Modification of model of Chan and Govindaraju (2004)
- Model of Mualem (1976) for dual porosity model
- Explained in detail at poster 1523

Analysis of pressure head time series with the continuous wavelet transform

Figure 2. Medical CT scan

Figure 3. Horizontal slices

cm of depth at time day = 0 and at time day = 37> Consolidation at the interface and in the water table fluctuating zone (figure 4).

Figure 5. Soil retention and hydraulic conductivity curves at 17

- > Accumulation of fine particles (ZrO_2) under the interface and on top of water table fluctuating zone (figure 4).
- > High reduction of the porosity caused by consolidation and particle transport (figure 4).
- > High modification of the soil hydraulic properties (figure 5).
- > Evolution of the soil affected the dynamic of pressure head at a depth of 17 cm (figure 6).
- > Recharge and drainage cycles are longer (figure 6).

Conclusions

- > Using and analyzing Medical CT scans clearly illustrated the dynamics of anthropomorphic-driven impacts of water management on drainage.
 - > The results indicated an important modification of soil properties caused by consolidation and transport of particles.
 - Recharge cycles and drainage processes are longer.

Acknowledgements

References ATOKA

HORTAU SIMPLIFIED IRRIGATION

- Chan, T.P., and R.S. Govindaraju. 2004. Estimating soil water retention curve from particle-size distribution data based on polydisperse sphere systems. Vadose Zone J. 3:1443–1454.
- Mualem, Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12: 513–522.
- Or, D., F.J. Leij, V. Snyder, and T.A. Ghezzehei. 2000. Stochastic model of post-tillage soil pore space evolution. Water Resour. Res. 36:1641–1652.
- Rogasik, H., J.W. Crawford, O. Wendroth, I.M. Young, M. Joschko and K. Ritz. 1999. Discrimination of Soil Phases by Dual Energy X-ray Tomography. Soil Sci. Soc. Am. J. 63: 741-751. doi:10.2136/sssaj1999.634741x.
- Wildenschild, D. and A.P. Sheppard. 2013. X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Advances in Water Resources 51: 217-246. doi:http://dx.doi.org/10.1016/j.advwatres.2012.07.018

Figure 6. Pressure head at a depth of 17 cm as a function of time and continuous wavelet transform.