AGRICULTURE

Introduction

Grain sorghum (Sorghum bicolor) acres have been expanded in the semi arid regions in Oklahoma. Its natural drought tolerant nature has made it a good fit in the region over corn and soybean. The National Sorghum Growers yield contest producing yields in excess of 15 Mg ha⁻¹ has also aided in increasing acre and the interest in increasing inputs such as starter fertilizer.

Objectives

- Evaluate the impact of micronutrients application on yield.
- Evaluate the impact of specialized starter fertilizer formulations on yield.
- Demonstrating the negative consequence of poor nutrient product and rate selection on grain yield and stand.

Materials and Methods

- Studies were conducted on both producers fields and research stations.
- 2014; five locations established, four were harvested. 2015; four locations established, two were harvested.
- 14 treatments repeated four times, arranged in RCBD.
- Plots consisted of four rows (75 cm row spacing) 6 meters in length.
- Planted with two row John Deere Max emerge equipped with CO2 driven liquid starter system.
- Target seeding rate of 138,000 seeds ha⁻¹ (13.8 per m²)
- Nitrogen rate equalized over all treatments to reach regional yield goal
- Stand data collected after emergence.
- Center two rows harvest with plot combine

T	able 1	. Pre	e-pla	nt so	il sam	ple	result	s fro	т еа	ch lo	catio	n.
Location	Depth	рН	BI	NO3	M3 P	К	SO4	Са	Mg	Fe	Zn	В

	•								U			
	ст						ррт					
Billings	0-15	5.3	6.6	5	29	193	7	968	244	53	0.723	0.314
	15-45	6.1	6.9	6	13	317	9	3615	945	21	0.315	0.337
RedRock	0-15	5.8	6.7	6	10	139	7	1915	373	54	0.726	0.376
	15-45	6.5		6	2	319	13	5739	1309	24	0.300	0.500
Enid	0-15	7.8		9	16	192	na	na	na	na	na	na
Irrigated 14	0-15	7.3		35	12	527	na	na	na	na	na	na
Irrigated 15	0-15	7		16	11	182	7	6999	156	9	3.559	0.638
	15-30	7.8		13	17	507	10	2597	947	16	0.469	1.738
Dryland 15	0-15	7.8		3	9	419	na	na	na	na	na	na

Table 2. Treatment Structure, products, and rates applied. Total Amount applied in-furrow (Kg ha⁻¹)

		L ha ⁻¹		L ha ⁻¹	Ν	P2O5	K2O	S	Fe
1					0	0	0	0	0
2	10-34-0	23			3.25	11.1	0	0	0
3	10-34-0	47			6.5	22.2	0	0	0
4	10-34-0	94			13	44.4	0	0	0
5	10-34-0	187			26	88.8	0	0	0
6	Ultra-Fe ^{\$}	23			0.63	0	0	0	14.2
7	10-34-0	23	Thio-Sul*		4.75	11.1	0	3.2	0
8	10-34-0	23	K-Leaf [#]	9.4	3.25	11.1	3.7	0	0
9	10-34-0	23	MicroBolt Zn [%]	23.4	3.25	11.1	0	0	0
10	18-46-0				10	25	0	0	0
11	9-18-9-1%	23			2.78	5.55	2.78	0.309	0
12	9-24-3-1**	23			2.8	7.46	0.932	0	0.311
13	APP Dribble	47			6.5	22.2	0	0	0
14	10-34-0	23	Accomplish ^{\$\$}	4.7	3.25	11.1	0	0	0
Ś. A. J. C. J. J.									

⁹ Agri-Solutions-Winfield Solutions (St. Paul, MN)

* Terrsenderlo-Kerley (Pheonix, AZ) #ENC-Helena (Collierville, TN)

[%] Nachurs (Marion, OH)

**Agro-Culture (St. Johns, MI) Pro-Germ

^{\$\$} Loveland (Greeley, CO): Microganisms <1%. Bacillus Licheniformis, Bacillus megaterium, Bacillus Pumilus</p>

Evaluation of Starter Fertilizers for Grain Sorghum Production in Oklahoma

Results

Figure 2. Stand counts from all locations (Plant m²). Target population of 13.8.

Figure 1. John Deere Planter with liquid starter setup.

Red Rock 14

APP 2.5 APP APP 10 PP 20 FE SUI APP *** APP 10 PY BC 9.18.9 CETA TIBBLE COMP

Panhandle Dryland 15

APP 2.5 APP APP 10 P20 Fe osli APP* APP* 10 PA BC 9.18.9 Cermibble com

Figures 3-8 above, show the grain yield from each location (Mg ha⁻¹). ANOVA analysis showed no significant treatment difference at any site year (Alpha = 0.05).

Brian Arnall* Patrick Watkins, Camron Nisly, Linda Ervin, & Jonathan Williams

Discussion

- At only one location, Panhandle Dryland 15, ANOVA analysis (Alpha = 0.05) documented significant treatment impact on stand (APP 10, APP 20, Fe, APP Dribble Band).
- LSD T-Test did find significant stand differences Enid 14: Broadcast > APP20, APP+ThioSul RedRock 14: APP2.5, APP5, APP+ThioSul, APP+Zn > APP20 and Fe Irrigated 14: APP2.5 > APP10, Fe, APP+K, ProGerm, APP+Accomp Negative impact on stand by trts APP20 and
- APP+Thiosul not always documented as expected. ANOVA did not find significant treatment impact on
- yield at any site year. LSD T-Test did find significant stand differences Billings 14: Check, APP20 > APP2.5, Fe, ProGerm, APP+Accomp Enid 14: Broadcast > APP+ThioSul, APP+K, APP+Zn
- Fe, APP2.5> APP+ThioSul, APP+K RedRock 14: Broadcast > APP20 Irrigated 14: Broadcast > trts 1,3,4,9,11,12,13,14
- APP+K > Check, APP20, APP+Zn Dryland 15: APP10 > APP20, ProGerm, APP Dribble
- Irrigated 15: NS

Conclusions

- OSU's traditional recommendation of APP5, 10-34-0 at 47 L ha⁻¹, with addition of other nutrients based upon soil test shown to be valid. In no location was APP5 significantly less than other treatments.
- The dryland, nor-irrigated, production of sorghum in this semi-arid environment does not seem conducive to additional input cost of specialty starter formulations.
- If producers do not have starter capabilities the broadcast application of a fertilizer showed to be just as effective. In some circumstances out preforming infurrow applications.

APP5, Fe, Broadcast, 9-18-9 > APP20, ProGerm

A website to bridge the gap between Landlords and Leesses