Objective:
- Devise and assess an evaluation framework for industrial by-products with potential for productive use in engineered water treatment wetlands or similar developments.

Introduction
- Extensive land use change has substantially increased (diffuse) pollutant loads to many aquatic environments.
- Conventional wastewater treatment systems frequently unsuitable due to on-going requirements for guaranteed power supply and skilled labour.
- Wetlands and similar engineered structures for passive wastewater treatment widely recognised as a cost-effective means of attenuating diffuse water pollution.
- Mining and industrial by-products may be suitable for productive use as a substrate in water treatment wetlands or similar engineered structures for treatment of wastewater previously discarded or treated by less efficient or more costly means.

Material Assessment Framework

BASIC REQUIREMENTS
- MSDS – nominal chemical/physical properties, safe handling & use
- Material source & generation process
- Intended application(s)

PRIMARY CHARACTERISATION
- Geochemistry
- Mineralogy (XRD)
- Radioactivity (U-Th series)
- P sorption capacity/retention index

SECONDARY CHARACTERISATION
- Identification of potential fit for purpose use
- Leach testing (e.g. modified TCLP)
- Ecotoxicity testing
- Microbiological testing as required

TERTIARY CHARACTERISATION
- Longer-term laboratory and/or pilot-scale field trials to validate fit for purpose use
- Comprehensive assessment of material’s projected life cycle

USE REGISTRATION/LICENSE
- Define conditions of use (limitations, reuse or disposal)
- Generate necessary supporting documentation for NRM agency/industry/domestic product use in intended locale

Example Material Assessment

Table 1: U-Th series radiochemistry, P sorption capacity, trace element geochemistry

<table>
<thead>
<tr>
<th>Sample</th>
<th>Absorbed dose rate, D (mGy/h)</th>
<th>Equivalent annual external dose (mSv)</th>
<th>Effective annual external dose (mSv)</th>
<th>P sorption capacity (mg/g)</th>
<th>Trace elements with concentration > relevant soil/sediment guidelines (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JX1</td>
<td>20</td>
<td>0.12</td>
<td>0.02</td>
<td>14.0</td>
<td>Ba(1390), Be(1461), V(1520)</td>
</tr>
<tr>
<td>JX2</td>
<td>39</td>
<td>0.12</td>
<td>0.02</td>
<td>2.38</td>
<td>Ba(25), Ba(453), Cr(1080), Be(1082), Zn(1090)</td>
</tr>
<tr>
<td>JX3</td>
<td>192</td>
<td>1.38</td>
<td>0.24</td>
<td>12.2</td>
<td>Ba(1130), Ba(1180), Cr(1190), Be(1250), V(1260)</td>
</tr>
<tr>
<td>JX4</td>
<td>39</td>
<td>0.24</td>
<td>0.05</td>
<td>3.20</td>
<td>Ba(1540), Cr(1550), Be(1560), Cr(1560), Zn(1570)</td>
</tr>
<tr>
<td>JX5</td>
<td>110</td>
<td>0.12</td>
<td>0.02</td>
<td>9.32</td>
<td>Cr(1230), Cr(1240), Be(1250), Cr(1260), V(1270)</td>
</tr>
<tr>
<td>JX6</td>
<td>25</td>
<td>0.16</td>
<td>0.03</td>
<td>21.7</td>
<td>Cr(1330), Cr(1340), Be(1350), Cr(1360), V(1370)</td>
</tr>
<tr>
<td>JX7</td>
<td>186</td>
<td>1.34</td>
<td>0.23</td>
<td>16.7</td>
<td>Cr(1380), Cr(1390), Be(1390), Cr(1400), V(1410)</td>
</tr>
</tbody>
</table>

Example Assessment Summary

Table 2: Nutrient (N, P) attenuation in laboratory column trials

<table>
<thead>
<tr>
<th>Sample</th>
<th>EC or IC10</th>
<th>EC or IC50</th>
</tr>
</thead>
<tbody>
<tr>
<td>JX1</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>JX2</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>JX3</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>JX4</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>JX5</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Example Figure 1: Nutrient (N, P) attenuation in laboratory column trials

Figure 2: Synthetic softwater leachate toxicity

Figure 3: Potential N, P & Si limitation of column leachates

Example Material Assessment

- **Objective:** Devise and assess an evaluation framework for industrial by-products with potential for productive use in engineered water treatment wetlands or similar developments.

- **Introduction:**
 - Extensive land use change has substantially increased (diffuse) pollutant loads to many aquatic environments.
 - Conventional wastewater treatment systems frequently unsuitable due to on-going requirements for guaranteed power supply and skilled labour.
 - Wetlands and similar engineered structures for passive wastewater treatment widely recognised as a cost-effective means of attenuating diffuse water pollution.
 - Mining and industrial by-products may be suitable for productive use as a substrate in water treatment wetlands or similar engineered structures for treatment of wastewater previously discarded or treated by less efficient or more costly means.

- **Material Assessment Framework:**
 - **BASIC REQUIREMENTS:**
 - MSDS – nominal chemical/physical properties, safe handling & use
 - Material source & generation process
 - Intended application(s)
 - **PRIMARY CHARACTERISATION:**
 - Geochemistry
 - Mineralogy (XRD)
 - Radioactivity (U-Th series)
 - P sorption capacity/retention index
 - **SECONDARY CHARACTERISATION:**
 - Identification of potential fit for purpose use
 - Leach testing (e.g. modified TCLP)
 - Ecotoxicity testing
 - Microbiological testing as required
 - **TERTIARY CHARACTERISATION:**
 - Longer-term laboratory and/or pilot-scale field trials to validate fit for purpose use
 - Comprehensive assessment of material’s projected life cycle
 - **USE REGISTRATION/LICENSE:**
 - Define conditions of use (limitations, reuse or disposal)
 - Generate necessary supporting documentation for NRM agency/industry/domestic product use in intended locale

- **Example Material Assessment**

- **Table 1: U-Th series radiochemistry, P sorption capacity, trace element geochemistry**

- **Example Assessment Summary**

- **Figure 1: Nutrient (N, P) attenuation in laboratory column trials**

- **Figure 2: Synthetic softwater leachate toxicity**

- **Figure 3: Potential N, P & Si limitation of column leachates**