Amending Soils to Decrease Salinity and Acidity for Improved Rice

Production in Casamance/Senegal

Thioro Fall, John M. Galbraith, Thomas L. Thompson, Wade E. Thomason, A. Ozzie Abaye

Dept. of Crop & Soil Environ. Sciences, Virginia Tech, 185 Ag Quad Lane, Blacksburg, VA 24061

Introduction and General Objective

The saline-sodic nature of the soils in Djibelor/Casamance, their acidity level, low nutrients and organic matter content restrict the growth potential of lowland rainfed rice (Mangrove) to about 3.4 mtons ha⁻¹. Average rainfall is 1200 mm yr⁻¹. The soil was a fine-loamy, kaolinitic, isohyperthermic family of Aeric Endoaquults. The pH of the study plot was 4.6. The average salinity was 24.2 dS/m, and the average SAR was 30.2.

Results

Soil EC (saturated paste): no treatment difference but decreased from Initial to Harvest by 76.5% in flat and 45.5% in raised beds

45		35-			
45	Sampling_Period	35		Sampling Period	

Rice Yield: no significant difference between treatments. Rice yield was affected by the percent of live plants, which was significantly different < 0.0001 in planting methods and amendments

Objective: determine the effect of planting methods (raised versus flat bedding), biochar, and shell (liming agent) on rice yield.

Fig. 1a: EC by planting methods

Treatment Interaction	Percent Decreased (%)
Flat,Control	85.8
Flat,Bioch+Sh	83.7
Flat,Biochar	80.6
Flat,Shell	72.2
Raised,Shell	48.0
Raised,Bioch+Sh	33.4
Raised, Biochar	25.6
Raised,Control	25.0

treatment interaction

Table 1: % Change in EC by treatment interaction

Soil pH (saturated paste): significant interaction

between planting methods and amendments with a pvalue of 0.0063 (Fig. 2a,2b), and also significant difference between amendments <0.0001 (Fig. 2c)

interaction.

Fig. 3a: Rice yield by treatment interaction Fig. 3b: Rice yield by amendments

Discussion/Conclusions

Soil salinity after harvest:

Lower EC in the flat beds because they had more leaching of soluble salts due to longer submerged soil than raised beds where salt tend to accumulate at the top-center

Figure 1. Map Senegal/Casamance region; and research plots

Methodology

We applied 373.33 kg ha⁻¹ of NPK 15-15-15, 110 kg ha⁻¹ of NPK 13-00-50, plus 134 kg ha⁻¹ urea in a split plot design, with a target yield of 6 mtons ha⁻¹. Two-way ANOVA was used to separate treatment means.

□ Whole plot factor treatment:

- Planting methods "Raised" versus "Flat" beds (raised beds were above water the whole growing season, flat beds were underwater
- □ Subplot factors treatments:
 - Biochar (Eucalyptus camaldulensis): 20 mtons ha⁻¹
 - Shell (crushed oyster shell) 7.2 mtons ha⁻¹
 - ✤ Biochar+Shell: 20 mtons ha⁻¹ and 7.2 mtons ha⁻¹,

□ The physical properties of the biochar and shell fragments probably helped retain salts

Soil pH after harvest:

- □ Flat and raised beds receiving shell and biochar+shell (Fig. 2b), as well as the amendments biochar+shell and shell (Fig. 2c) have the highest soil pH and percent increase (Table 1a and 1b)
- □ The biochar source used has a pH of 7.6 and the oyster is composed of of calcium carbonate (liming agent)

Rice Yield:

- □ High plant mortality was observed a week after rice transplanting. The lack of rainfall that year (2014) was one of the main causes;
- □ The number of harvested plants was determining the rice yield values.

respectively

Control

Soil properties were compared before treatments (Initial) and after treatments/harvest (Harvest).

Flat,Bioch+Sh	2.58		Bioch+Sh	2.1
Raised,Bioch+Sh	1.64			
Raised,Shell	1.20		Shell	2.0
Flat,Biochar	0.24			0.2
Raised,Control	0.15		Biochar	
Raised,Biochar	0.07		Control	
Flat,Control	0.02			0.1

Table 1a: pH unit change by interaction Table 1b: pH unit change by amendments

Acknowledgments:

We thank the USAID-ERA for their support by funding this Research. I am personally grateful to them for participating in my education.

Flat,Shell