

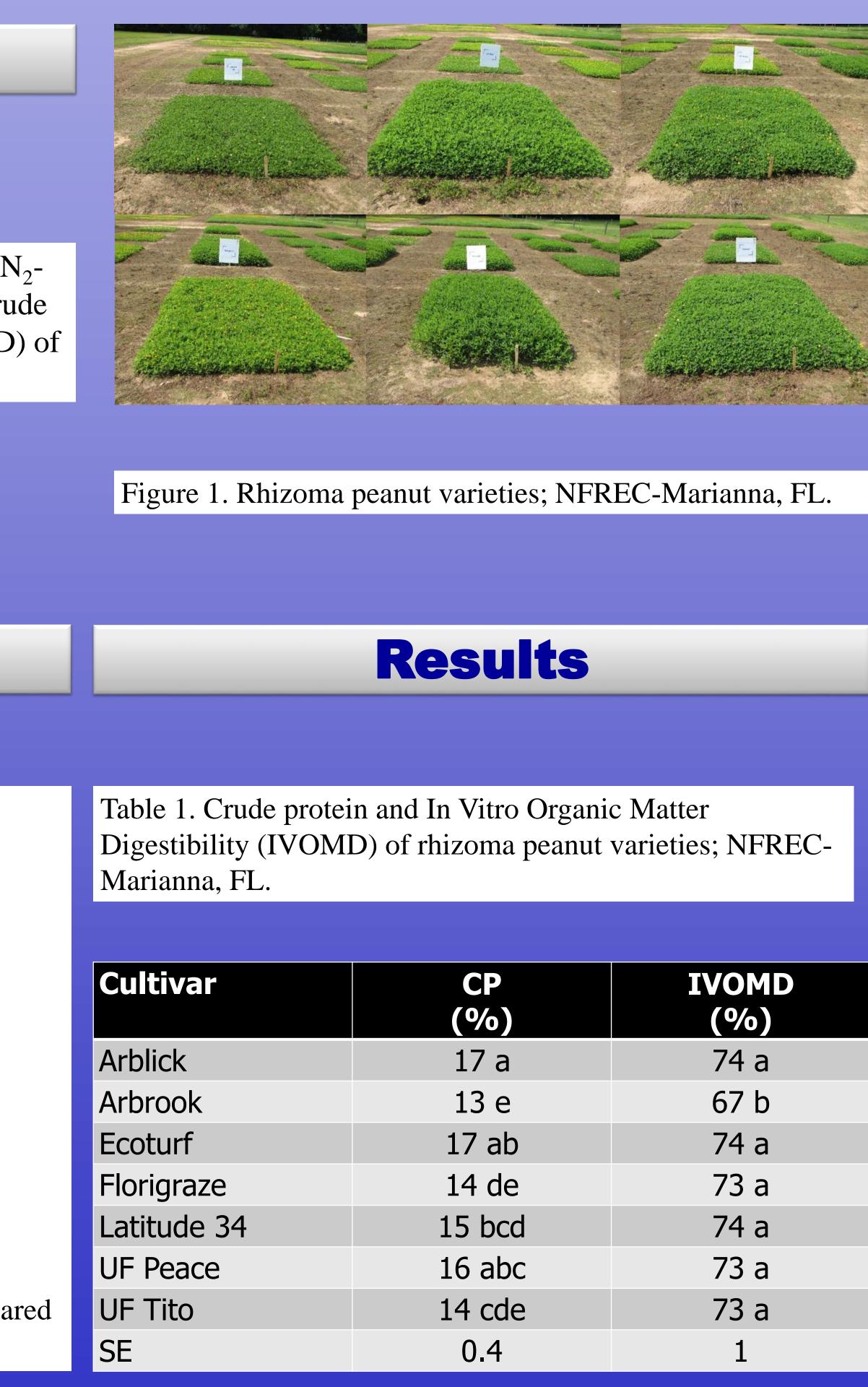
Biological N₂-fixation, Belowground Biomass, and Forage Potential of Rhizoma Peanut (Arachis glabrata Benth) Varieties

J.C.B. Dubeux, Jr.¹; A. Blount¹, C. Mackowiak¹, E.R.S. Santos¹, H.M.S. Silva¹, M. Ruiz-Moreno¹

- \checkmark Although RP has been extensively used, there are limited data on biological N₂-fixation (BNF) for this species
- ✓ Root and rhizome mass is an important trait associated to grazing and cold tolerances.
- ✓ Recently released varieties of RP have not been evaluated for BNF and root and rhizome mass in North Florida.

Objectives

 \checkmark The overall objective of this project was to assess the biological N₂fixation (BNF), belowground biomass and forage potential (crude protein – CP and in vitro organic matter digestibility – IVOMD) of seven rhizoma peanut varieties.


Methods

- ✓ Rhizoma peanut varieties included Arblick, Arbrook, Ecoturf, Florigraze, Latitude 34, UF Peace, and UF Tito.
- ✓ Complete randomized block design with four replications per treatment.
- ✓ Response variables included total dry matter yield (DMY), N concentration, N Yield, %N derived from atmosphere (%Ndfa), biological N_2 -fixation, IVOMD, and root + rhizome mass.
- ✓ Harvests occurred in 6 June, 13 August, and 14 October 2014.
- \checkmark BNF evaluated using natural abundance ¹⁵N technique.
- ✓ Data analyzed using proc mixed from SAS and LSMEANS compared using PDIFF adjusted by Tukey (P < 0.05)

¹University of Florida, North Florida Research and Education Center (NFREC)

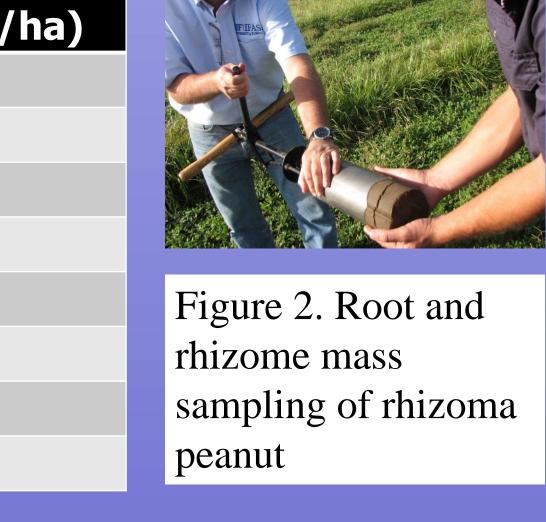
Introduction

 A Rhizoma peanut (Arachis glabrata Benth) is a warm-season perennial legume adapted to Southeast USA. Rhizoma peanut (RP) is mostly used as a hay crop in North Florida, but it can also be managed under grazing.
 \checkmark Symbiotic association between forage legumes and N₂-fixing microorganisms reduces the need for pasture N fertilization and increases forage N concentration.

Results

Table 2. Annual dry matter yield (sum of 3 harvests) and root/rhizome biomass of rhizoma peanut varieties; NFREC-Marianna, FL.

Cultivar	Annual DM Yield (kg/ha)	Root + Rhizo mass (kg DM/
Arblick	7500 abc	16450 ab
Arbrook	10240 a	17380 ab
Ecoturf	7180 bc	22920 a
Florigraze	6000 c	10730 b
Latitude 34	6270 c	21410 ab
UF Peace	9240 ab	17500 ab
UF Tito	9560 ab	15900 ab
SE	650	2650


Table 3. Annual shoot N yield (sum of 3 harvests), %Ndfa, and annual shoot BNF of rhizoma peanut varieties; NFREC-Marianna, FL.

Cultivar	Annual shoot N yield (kg N/ha)	%Ndfa	Annual shoot BNF (kg N/ha)
Arblick	213 ab	86 a	180 ab
Arbrook	209 ab	73 b	150 abc
Ecoturf	189 abc	81 ab	160 abc
Florigraze	136 c	81 ab	110 c
Latitude 34	151 bc	84 ab	130 bc
UF Peace	237 a	83 ab	200 a
UF Tito	222 a	87 a	190 a
SE	6	2	15

Conclusions

Rhizoma peanut varieties differ in their above- and belowground biomass production, biological N_2 fixation, and forage potential. Belowground biomass represents a larger pool compared to above ground biomass. In general, the results indicated the ability of rhizoma peanut to add N and increase forage nutritive value in livestock production systems.

