

Presentation ID# 94753 QR Code UID: 94753

Tall Fescue Mixtures with Birdsfoot Trefoil or Alfalfa improve Forage Production, Beef Steer Gains, and Economic Returns

Blair L. Waldron¹ J. Earl Creech² Troy J. Bingham² Michael D. Peel¹ Donald L. Snyder²

¹USDA-ARS, Forage and Range Res. Lab, Logan, Utah ²Utah State University, Logan, Utah Contact: Blair Waldron, blair.waldron@ars.usda.gov

INTRODUCTION AND OBJECTIVE

• High fertilizer prices and environmental stewardship have increased interest in grass-legume mixed pastures.

 Grasses need nitrogen to produce sufficient forage—generally 112 to 168 kg/ha N per year in the western U.S.

• There has been a drastic increase in cost of N fertilizer.

• Low-levels of condensed tannins in birdsfoot trefoil are reported to

RESULTS

Table 1. Livestock weight gain.									
	Livestock v	veight (kg)	Cumulative average daily gain (ADG; kg)						
	Day 1	Day 112							
TRMT	(begin)	(end)	Day 1-28	Day 1-56	Day 1– 84	Day 1– 11			
TF+BFT	344.2 A	425.7 A	1.30 A	0.84 A	0.82 A	0.73 A			
TF+ALF	340.1 A	415.3 A	1.50 A	0.92 A	0.78 A	0.67 B			
TF+N	346.2 A	414.7 A	1.17 AB	0.76 AB	0.65 B	0.61 C			
TF-N	339.1 A	383.8 B	0.94 B	0.61 B	0.50 C	0.40 C			
Mean S.E.	3.7	5.8	0.12	0.08	0.03	0.05			
Trmt P-VALUE	0.3200	0.0001	0.0172	0.0039	0.0001	0.0001			
YR P-VALUE	0.0001	0.0001	0.8364	0.6388	0.0619	0.3885			
Trmt*YR P-VALUE	0.4342	0.1507	0.0607	0.1979	0.0498	0.4413			

CONCLUSIONS

 There were few significant Treatment by Year interactions for livestock performance; Treatment by Year interactions for herbage traits were mostly due to magnitude and not rank change.

 Overall, TF+BFT had the highest rate of steer weight gain (Table 1).

- increase ruminal nitrogen utilization and may improve livestock performance.
- Past grass-legume research was not indicative of the irrigated, rotationally stocked pastures common in the western U.S.
- Therefore the objectives of this experiment were:
 - Determine and compare relative livestock performance, economic return, and herbage mass and nutritive value of tall fescue with or without N-fertilizer to tall fescue binary mixtures with alfalfa or birdsfoot trefoil.

MATERIALS AND METHODS

Pastures and Plant Materials:

- Treatments: Tall fescue + N fertilizer (TF+N, 168 kg/ha), tall fescue unfertilized (TF-N), tall fescue + alfalfa (TF+ALF), and tall fescue + Birdsfoot trefoil (TF+BFT).
- Seeding rate: Monoculture, 18 kg ha⁻¹; Binary mix, 11 kg ha⁻¹ TF and 7 kg ha⁻¹ legume (resulted in 30%

Table 2. Herbage mass and nutritive value.

TRMT	Herbage	СР	IVTD	NDF	NDFD	NFC	NEm	NEg
	- kg ha⁻¹ -			g kg ⁻¹ ·			Mcal	kg ⁻¹
FF+BFT	10856 B	145.2 B	787.9 A	499.2 C	574.0 C	235.4 A	1.27 A	0.70 A
FF+ALF	10386 B	159.4 A	788.6 A	491.8 C	564.6 C	229.6 A	1.25 A	0.68 A
ΓF+N	11696 A	133.7 C	780.5 A	555.0 B	605.9 A	183.6 C	1.14 B	0.58 E
FF-N	7285 C	105.1 D	768.5 B	569.7 A	591.4 B	193.9 B	1.10 C	0.54 (

• Rate of weight gain was greatest for all treatments during the first 28 days of grazing (Fig 1).

- The decrease in rate of weight gain (from rotation-1 to rotation-2) corresponded with a decrease in NEg (Fig 2).
- TF+legume mixtures always had greater NEg than the TF monocultures (Table 2, Fig 2).
- Herbage mass was slightly less for TF-legume mixtures than the TF+N, but substantially greater than TF-N (Table 2).
- TF+BFT pastures had the highest economic net return, more than doubling the net return of TF+N (Table 3).
 - The net return of \$1197 ha⁻¹ for TF+BFT is comparable or better than common field crops in the region (\$464, \$780, and \$1608 for grain corn, wheat, and alfalfa, respectively).

These results indicate that adding N via fertilizer or legume increases steer weight gains, herbage mass, nutritive value, and net return compared to no N fertilizer on tall fescue.

legume in herbage mass).

 RCB design (3 reps) with
 0.4 ha pastures divided into four 0.1 ha paddocks.

- Planted in Fall 2010. Mechanically harvested in 2011 to remove establishment year bias. Grazed in 2012 and 2013.
- Irrigated: 3.8 cm every 7 days during grazing season.

Grazing and herbage Data:

• Grazed for 112 days (mid-May to Mid-September) in 2012 and 2013.

 Rotational Stocking: 7-day grazing period per paddock, 28-day rotation cycle (21 day rest period).

99	5.3	9.1	7.9	11.4	6.7	0.02	0.02
0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
0.0002	0.0159	0.0001	0.2348	0.0034	0.0001	0.0001	0.0001
0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
0.0271	0.0938	0.3678	0.2348	0.0266	0.0176	0.5136	0.487
	99 0.0001 0.0001 0.0002 0.0001 0.0271	995.30.00010.00010.00010.00010.00020.01590.00010.00010.02710.0938	995.39.10.00010.00010.00010.00010.00010.00010.00020.01590.00010.00010.00010.00010.02710.09380.3678	995.39.17.90.00010.00010.00010.00010.00010.00010.00010.00010.00020.01590.00010.23480.00010.00010.00010.00010.02710.09380.36780.2348	995.39.17.911.40.00010.00010.00010.00010.00010.00010.00010.00010.00010.00010.00020.01590.00010.23480.00340.00010.00010.00010.00010.00010.02710.09380.36780.23480.0266	995.39.17.911.46.70.00010.00010.00010.00010.00010.00010.00010.00010.00010.00010.00010.00010.00020.01590.00010.23480.00340.00010.00010.00010.00010.00010.00010.00010.02710.09380.36780.23480.02660.0176	995.39.17.911.46.70.020.00010.00010.00010.00010.00010.00010.00010.00010.00010.00010.00010.00010.00010.00010.00020.01590.00010.23480.00340.00010.00010.00010.00010.00010.00010.00010.00010.00010.02710.09380.36780.23480.02660.01760.5136

Table 3. Economic analysis.

	Initial			Stocking		Not
TRMT	value†	Final value	(Steer)	rate‡	(Land)§	Return#
	- \$ Steer ⁻¹ -	- \$ Steer ⁻¹ -	- \$ Steer ⁻¹ -	- AU ha ⁻¹ -	- \$ ha ⁻¹ -	- \$ ha⁻¹ -
F+BFT	957 A	1126 A	169 A	9.0 A	1528 A	1197 A
F+ALF	961 A	1101 A	139 B	8.4 B	1174 B	846 B
F+N	962 A	1105 A	143 AB	8.2 B	1175 B	494 C
F-N	958 A	1042 B	84 C	5.0 C	446 C	96 D

• TF+legume mixtures result in greater steer weight gains and economic net return compared to TF+N or TF-N.

 TF+legume mixtures can be substituted for TF+N to address environmental concerns (N-leaching, run-off) without reducing production.

• TF+BFT results in the greatest ADG (Table 1) and Net Return (Table 3) without the risk of bloat.

 Grass-legume mixtures with greater nutritive energy mid-grazing-season may further increase livestock gains and economic return.

• Steers weighed at end of every 28-day rotation cycle.

 Four 0.25-m⁻² samples collected from paddocks just prior to grazing to determine stocking rate and herbage mass and nutritive value. Mean S.E. 14 0.3 10 10 85 85 0.9522 0.0001 Trmt P-value 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0004 0.0001 0.0001 YR P-value 0.0001 0.1285 0.0001 0.5206 0.5206 Trmt*YR P-value 0.0472 0.8116 ⁺Price based upon 5-year average for Utah/Idaho region. ‡Actual stocking rate used in study, was determined using green wt of herbage samples. §Added value (land) = added value (steer) * stocking rate. #Net Return = added value (land) - amortized establishment and yearly management costs (\$ ha⁻¹, TF+BFT=330, TF+ALF=328, TF+N=681, TF-N=349).