

Drought priming enhanced tolerance to drought stress in wheat

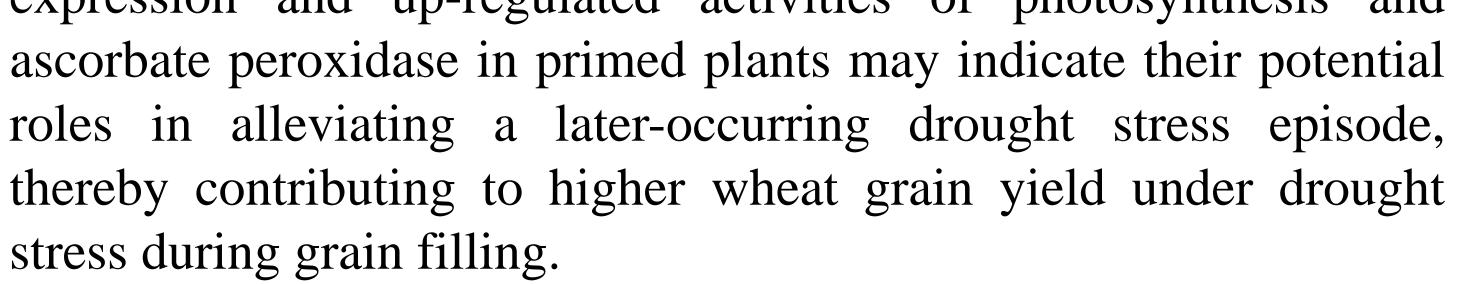
Xiao Wang¹, Bernd Wollenweber², Jian Cai¹, Qin Zhou¹, Dong Jiang¹

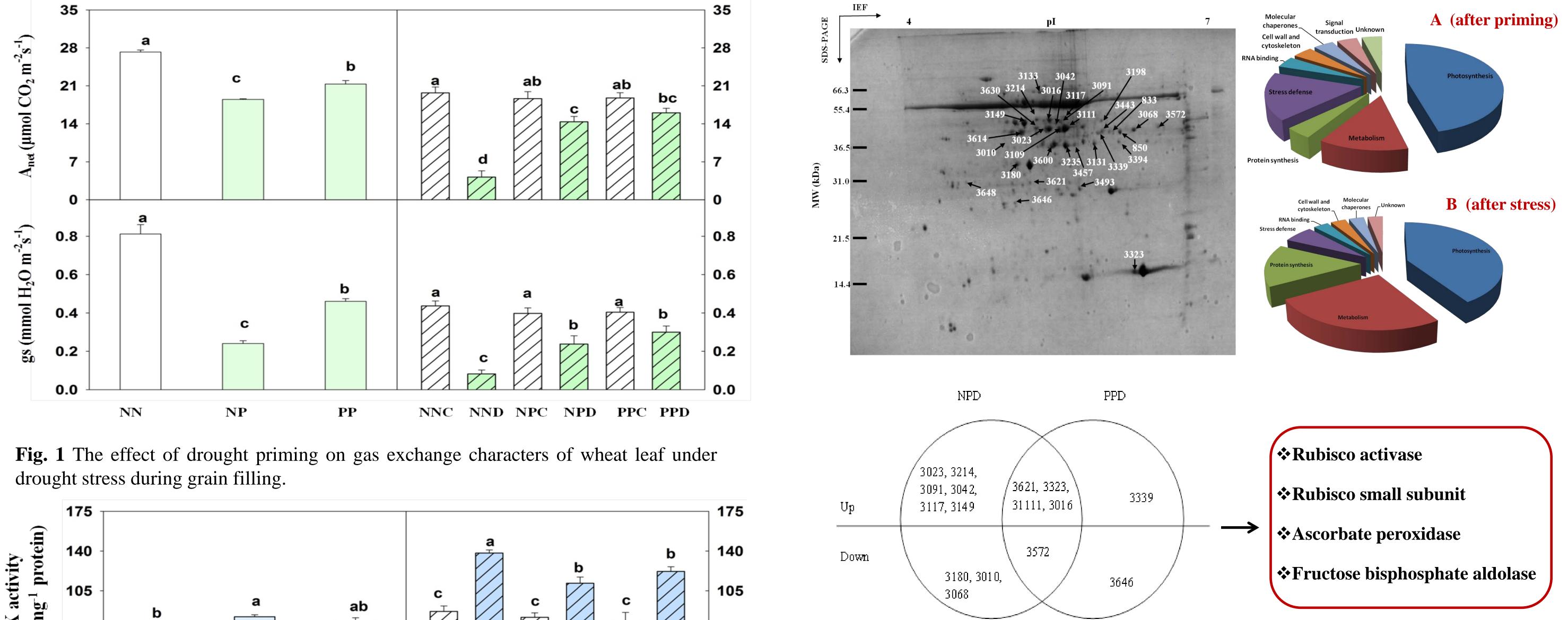
¹College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China; ² Faculty of Sciences and technology, Aarhus University, Denmark

xiaowang@njau.edu.cn; jiangd@njau.edu.cn

Introduction

Background: Drought stress occurring during the reproductive growth stage of crops usually leads to considerable reductions in grain yield and quality. Therefore, enhancing tolerance to drought stress is important for food security in a future warmer and drier climate. Our previous studies have shown that pre-treatment of high temperature before anthesis could alleviate negative effects of the same stress occurring after anthesis in wheat. However, the


Conclusions


Proteins in flag leaves differently expressed by the priming and drought stress were mainly related to photosynthesis, stress defence, metabolism, molecular chaperone, and cell structure. Furthermore, the protein abundance of Rubisco small subunit, Rubisco activase and ascorbate peroxidase were up-regulated in primed plants compared with non-primed plants under drought stress during grain filling. In conclusion, the altered protein expression and up-regulated activities of photosynthesis and

underlying molecular mechanisms are far from clear.

Objective: Investigate whether the early drought priming could alleviate negative effects of later drought stress occurring during grain filling, and to elucidate the underling mechanisms at the proteome level.

Results

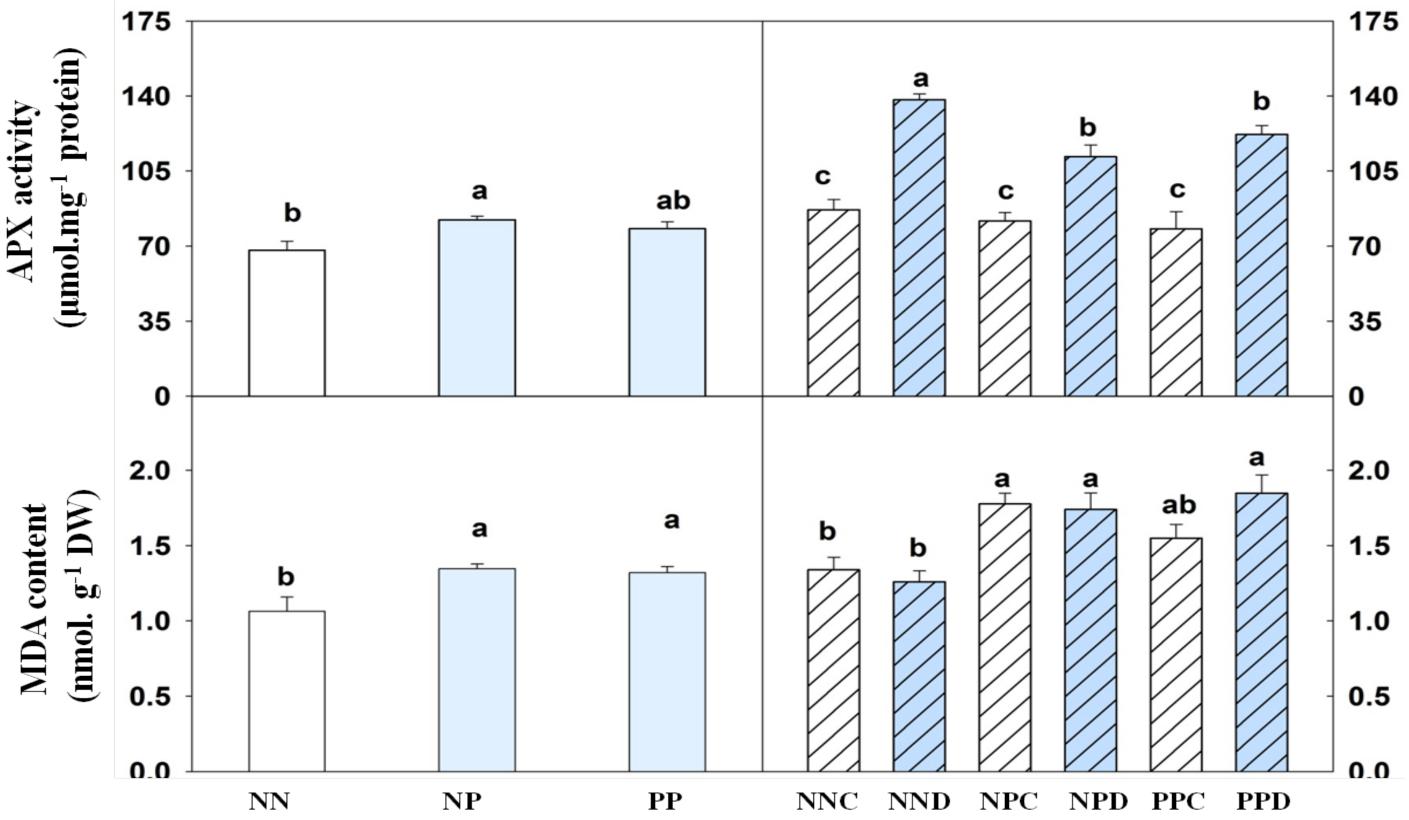


Fig. 2 The effect of drought priming on membrane lipid peroxidation and ascorbate peroxidase activity in wheat leaves under drought stress during grain filling.

Fig. 4 Proteome analysis of wheat leaves after drought priming and drought stress

Table 1 Selected results of differentially expressed proteins between primed and nonprimed plants under drought stress during grain filling in wheat leaves

Spot no.	FC ^a	Protein name	Accession no.	Taxonomy	Theor. Mr ^b /pI	Exp. Mr ^c /pI	Match no. ^d	SC ^e	E-value	Peptides sequences	Function
Up-reg	gulated	l under drought stress						•			
3180	1.8	Oxygen-evolving enhancer protein 1	gi 357111487	Brachypodium distachyon	34.8/5.7	35/5.2	10	39	3.3E-07		Photosynthesis
3621	1.6	Ascorbate peroxidase	gi 226897533	Triticum aestivum	26.8/5.5	32/5.3	11	38	5.2E-05		Stress defense
3646	1.6	2-Cys peroxiredoxin BAS1	gi 2499477	Hordeum vulgare	23.4/5.5	28/5.2	6	32	5.1E-04		Stress defense
3010	2.7	Plastid glutamine synthetase isoform GS2c	gi 71362640	Triticum aestivum	47/5.8	43/5.1	б	17	8.4E-03		Protein synthesis
Down-	-regula	ated under drought stress									
3600	1.5	Fructose-bisphosphate aldolase 2	gi 326499908	Hordeum vulgare	41.8/6.4	39/5.6	18	38	5.2E-08		Metabolism
3572	2.3	Fructose bisphosphate aldolase, cytoplasmic isozyme 1-like	gi 326493652	Hordeum vulgare	38.1/6.1	42/6.7	9	21	2.1E-08		Metabolism
833	2.2	Fructose-bisphosphate aldolase, cytoplasmic isozyme 1-like	gi 326523629	Hordeum vulgare	41.6/7.1	42/6.2	7	11	1.4E-02		Metabolism
3023	2.5	Chloroplast fructose- bisphosphate aldolase	gi 223018643	Triticum aestivum	42.2/5.9	46/5.6	17	50	5.2E-12		Metabolism
3235	1.3	Fructose-bisphosphate aldolase, cytoplasmic isozyme 1-like	gi 326499908	Hordeum vulgare	41.7/6.4	37/5.7	17	38	3.7E-02		Metabolism
3493	1.7	Triosephosphate- isomerase	gi 326496613	Hordeum vulgare	32.7/7.0	30/5.8	9	28	6.4E-03		Metabolism
850	1.9	Cytosolic malate dehydrogenase	gi 37928995	Triticum aestivum	24.6/6.6	41/6.3	б	23	1.3E-02		Metabolism

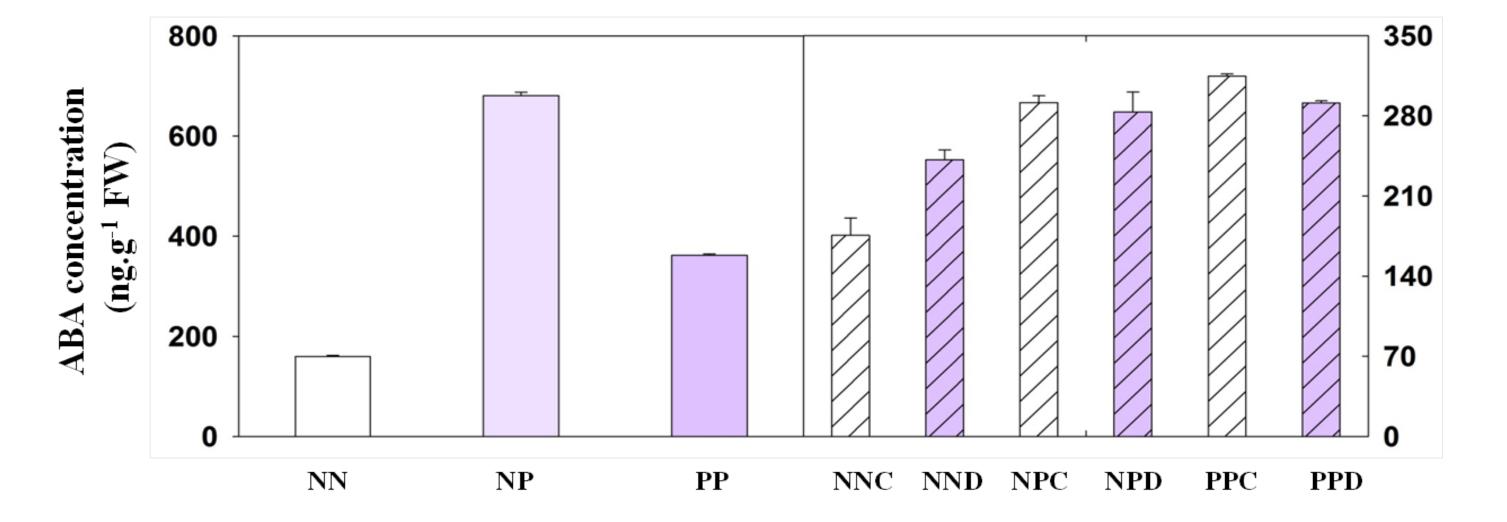


Fig. 3 The effect of drought priming on ABA concentration under drought stress.

Reference

Wang, X., et al. (2014). Journal of Experimental Botany Wang, X., et al. (2015). Plant Growth Regulation

Materials and methods

Spring wheat (*Triticum aestivum* L. cv. Vinjett) was used. Soil relative water content (*SRWC*) was used for reference of drought priming or treatment. Drought priming applied at seedling and/or at stem elongation stage was done by withholding watering until the SRWC reached approximately 35-40%, drought stress was applied during grain filling and control SRWC around 20-25%.

Leaf proteins were identified by MALDI-TOF MS and MS/MS, The leaf gas exchange, cell membrane lipid peroxidation and ascorbate peroxidase (APX) activity were measured.